4 Interpolation

4.1 Linear Interpolation

A common computational problem in physics involves determining the value
of a particular function at one or more points of interest from a tabulation of
that function. For instance, we may wish to calculate the index of refraction
of a type of glass at a particular wavelength, but be faced with the problem
that that particular wavelength is not explicitly in the tabulation. In such
cases, we need to be able to interpolate in the table to find the value of the
function at the point of interest. Let us take a particular example.

BK-7 is a type of common optical crown glass. Its index of refraction n
varies as a function of wavelength; for shorter wavelengths n is larger than
for longer wavelengths, and thus violet light is refracted more strongly than
red light, leading to the phenomenon of dispersion. The index of refraction
is tabulated in the following table:

Refractive Index for BK7 Glass

A (A) n A (A) n A (A) n

3511 1.53894 | 4965 1.52165 | 8210 1.51037
3638 1.53648 | 5017 1.52130 | 8300 1.51021
4047 1.53024 | 5145 1.52049 | 8521 1.50981
4358 1.52669 | 5320 1.51947 | 9040 1.50894
4416 1.52611 | 5461 1.51872 | 10140 1.50731
4579 1.52462 | 5876 1.51680 | 10600 1.50669
4658 1.52395 | 5893 1.51673 | 13000 1.50371
4727 1.52339 | 6328 1.51509 | 15000 1.50130
4765 1.52310 | 6438 1.51472 | 15500 1.50068
4800 1.52283 | 6563 1.51432 | 19701 1.49500
4861 1.52238 | 6943 1.51322 | 23254 1.48929
4880 1.52224 | 7860 1.51106

Let us suppose that we wish to find the index of refraction at a wavelength
of 5000A. Unfortunately, that wavelength is not found in the table, and so
we must estimate it from the values in the table. We must make some
assumption about how n varies between the tabular values. Presumably it

varies in a smooth sort of way and does not take wild excursions between
the tabulated values. The simplest and quite often an entirely adequate
assumption to make is that the actual function varies linearly between the
tabulated values. This is the basis of linear interpolation.

Exercise 4.1: Determine, by hand, the value of the index of refraction of
BK?7 at 5000A using linear interpolation.

How do we carry out linear interpolation on the computer? Let us sup-
pose that the function is tabulated at N points and takes on the values
Y1, Y2, Y3...yn at the points x1, o, x3...25, and that we want to find the value
of the function y at a point x that lies someplace in the interval between x;
and zy.

The first thing that we must do is to bracket z, that is we must find a
J such that ; < < x;;;. This can be accomplished by the following code
fragment:

for(i=1;i<kN;i++) {
if(xnl[i] < x && xn[i+1] >= x) {
j=1
break;
}
}

where the xn’s are the tabulated points. When the if statement is
satisfied, j is assigned the value of i and the procedure drops out of the
loop. Please note that this is not the most efficient way to accomplish this
task, especially if N is very large. We will look at a more efficient way later
on.

Once we have bracketed x, we can find the equation of the line between the
points (x;,y;) and (211, y;4+1). This equation will be of the form y = mz +b
where m is the slope and b is the y-intercept. As we all know, the slope is
given by

m— Yi+1 —Y; (1)
Lj+1 = X5

and the intercept can be found by substituting one point, say, (z;,y;) into
the resulting equation. Thus,

Yi+1 — Yj T <2>

b=y—mx=y; — j

Lj+1 = T
yielding for the equation of the line, after some rearrangement,
Yi+1 — Yy
y=y+|—/— | (x —2; 3
(L) oy ®)

It is left to the student to show (for future reference) that this equation may
be rewritten

y = Ay; + By (4)
where
A= T (5)
Tj+1 —
and
xr — T;
p=_1""%_ (6)
Tj+1 — T

Exercise 4.2: write a C-function that will linearly interpolate the tabular
data for the index of refraction of BK-7 and return a value for n for wave-
lengths between 3511A and 23254A. Note that the code fragment given above
assumes unit-offset vectors. Use the information in § 3.4 to convert your vec-
tors to unit offset. Write a driver program that will use this function to
prompt the user for a wavelength and then print to screen the corresponding
value of n.

Exercise 4.3: The file boiling.dat (found in the Shared directory on the
comphys server, or on the webpage) contains data in two columns for the
boiling point of water at different atmospheric pressures. The first column is
the pressure in millibars, the second is the corresponding boiling point tem-
perature in degrees Celsius. Write a C-function that initializes two vectors,
P and T with the data in that data file (don’t read in the datafile — hardwire
the data into your program), accepts the pressure as a double floating-point
parameter, and returns the value of the temperature of the boiling point at
that pressure. You should also write a driver program that will prompt the
user for an atmospheric pressure, check whether it is within the limits of the
data (50 < P < 2150), calls your C-function, and prints to the screen the
boiling point of water at that pressure.

4.2 Polynomial Interpolation

Linear interpolation is good enough for government work, and it is even better
than that. Because it is simple and makes the simplest possible assumption
about the data, it should be employed in all cases except where it is manifestly
inadequate. There are such cases. Sometimes the function being interpolated
is very non-linear or has been tabulated at such wide intervals that linear
interpolation would lead to large errors. Some applications demand more
than simply the functional values at the interpolated points; sometimes the
derivative of the function is required as well. With linear interpolation, the
derivative is a constant between the tabulated points, and may actually be
undefined at the tabulated points!

For such applications it may be best to interpolate using a polynomial
interpolating function or functions. It can be shown that the following poly-
nomial P(z) of degree N —1 will exactly pass through the N tabulated points
of the function y = f(z):

B (x —xo)(x — 23) ... (. — 2N)
Plz) = (1 — 22)(21 — 23) ... (T1 — xN)yl

(r—x)(x—23)...(x — 2N)
- ($2—$1)<5L’2—5L’3)...($2—:L’N)y2

(x —x1)(x — 22)...(x — xN_1)
et (I‘N—l‘l)(fL'N—IL'Q)...(ZL'N—I‘N_l)yN

The problem with the direct application of the polynomial P(x) is that
for tabulations with many points, it can lead to very high degree polynomi-
als. For instance, if a function is tabulated at 100 points, the above equation
would yield a polynomial of degree 99! Such a polynomial could potentially
fluctuate wildly between the tabulated points and thus not be a good rep-
resentation of the actual function. P(x) is more usually applied to subsets
of the tabulated points. For instance, if the polynomial is applied to subsets
of 3 points, it yields parabolic interpolation, which can be much superior to
linear interpolation if the function has a number of minima and maxima.

One problem with parabolic 3-point interpolation is that when it comes
to bracketing x, there is an ambiguity — does one bracket between z; and x5
or between x5 and x3? This is one reason why cubic 4-point interpolation is
more commonly practiced — the bracketing is then between x5 and x3 with no

4

ambiguity. Such interpolation is also called Lagrangian 4-point interpolation.
The Lagrangian 4-point interpolation equation can be written:

(# — 22)(x — @3) (% — 74)
(w1 — w2) (@1 — m3) (21 — 74)
(z — 1) (z — z3) (7 — @)
(w2 — @1) (22 — 3) (22 — 24)
(z — 1) (x — 33) (7 — @)
(w3 — @1) (23 — 22) (23 — 24)
(x — 1) (x — z2) (2 — x3)
(24 — 21) (24 — 22) (24 — 73)

L(z) =

Y1+

Y2 +

Y3 +

Ya

which the student can easily verify by reference to the equation for P(z).

To apply this interpolation equation, the user should first bracket x be-
tween x; and x4, as before, but now identify ; with x5 in the above equation
and zj;; with x3. It then follows that z; will be z;_; and x4 will be x;.
The perceptive student will see that this will lead to a problem at the end-
points. For instance, if x is situated between the first two tabulated points,
xj—1 will be undefined. Likewise, if x is situated between the last two tabu-
lated points, x;1o will be undefined. Thus in those intervals, the user must
either interpolate linearly, or, in the first case, use the polynomial that would
be used for an x bracketed between the 2nd and 3rd tabulated points, and
similarly for the last case.

Exercise 4.4: Write a C-function that will implement the 4-point La-
grangian interpolation formula above. For the endpoints, use the polynomial
that would have been defined for the adjacent interval as described above.
Modify the driver program in Exercise 4.2 (interpolation in a table of the
wavelength and the index of refraction for BK-7 glass) to use this new C-
function. Compare the results between the two programs.

Exercise 4.5: Write a C-function that will implement the 4-point La-
grangian interpolation formula above. For the endpoints, use the polynomial
that would have been defined for the adjacent interval as described above.
Modify the driver program in Exercise 4.3 (interpolation in a table of atmo-
spheric pressure and the boiling point of water) to use this new C-function.
Compare the results between the two programs.

We have only scratched the surface of the subject of interpolation. The
subject of Extrapolation — finding a value for a function outside the range of
the defined points — is much more dangerous. Interpolation schemes can be
used for extrapolation, but only with great care!

Before we leave the subject of interpolation, let us examine one further
subject, that of efficiently bracketing =. If we have a set of 2’s (say in a vector
x[1]) in numerical order that we must find interpolated values for, there is
a simple time saving step that we can use, implemented in the following
fragment of code (assume x is a vector of dimension n):

=5

for(k=1;k<=n;k++) {
for(i=j;i<N;i++) {
if(xn[i] < x[k] && xnl[i+1] >= x[k]) {
J =1
break;
}
}

here is your interpolation function code

}

Notice that the second for loop begins at i=j and not i=1; since the
xx’s are in numerical order, if x; is bracketed between xn[j] and xn[j+1],
there is no need to search beginning at i=1 for x4 ; because it will either be
bracketed between the same pair or later pairs (note that we are obviously
also assuming that the xn[j]’s are in numerical order). This can save an
enormous amount of time in a code that needs to interpolate in a large (say
N > 100) table. Another useful trick is that of bisection. Further notes on
bisection and other techniques for efficiently bracketing x can be found in
Numerical Recipes.

4.3 Interpolation in 2 dimensions

Some problems require interpolation in a two-dimensional grid of data. Let
us suppose, for instance, that y = y(z1,x9) where z; and xy are the two

6

independent variables. The functional value y is tabulated on a Cartesian
grid, and so the first thing the programmer must do is to bracket the desired
point (z1,z) in this grid (see figure below):

@ @
(ﬂflm 372,j+1) (xl,iJrl? 552,j+1)
EB (.Tl, 1’2)
@ @
($1,z‘,$2,j) ($1,i+1,$2,j)

This bracketing can be done by bracketing in the two dimensions one at
at time, using the technique discussed earlier.

The simplest interpolation technique in two dimensions is bilinear inter-
polation. If we define

i = Y@ 22;)

Y2 = Y(Ti1, T2y)
ys = Y(T1i41, Toji1)
Yo = y(:El i x2,]+1)

i.e., working our way counterclockwise around the above figure, then the
interpolation formulae are:

= (901 - 901,i)/(!7€1,i+1 - 901,i)

u = (v —x95)/(T25401 — T2)

which make both ¢ and u lie between 0 and 1. Then,
y(oy, a2) = (L= 1) (1 = w)yr + 1(1 = w)ys + tuys + (1 — t)uy,

where (x1,z5) are the coordinates of the desired point.

7

Exercise 4.6: A good example of the need to carry out interpolation in
2 dimensions is found in the calculation of partition functions. In certain
plasma-physics contexts, it is necessary to calculate the partition functions of
atoms and ions. A partition function, U, is essentially an overall “statistical
weight” for the atom, calculated by carrying out a weighted sum — weighted
according to the populations of the levels — of the statistical weights for all
of the energy levels in the atom. At low temperatures, the partition function
is simply the statistical weight of the ground level of the atom, but at higher
temperatures, the partition function becomes larger, as the populations in
the excited levels become significant. The partition function is also a function
of density, as at high densities in the plasma, the outermost energy levels are
effectively “stripped oft”, resulting in a lowering of the ionization energy,
usually denoted as AE. Thus, U = U(T, AE). Because the calculation for
a partition function can be very complex, they are usually calculated and
tabulated so that users need not carry out the full calculation. The following
table is a tabulation for the partition function for the hydrogen atom:

The Hydrogen Partition Function

T(K) | AE=0.10 AE=0.50 AE=1.00 AFE =200
3250 2.000 2.000 2.000 2.000
10083 2.000 2.000 2.000 2.000
14188 2.025 2.006 2.005 2.004
15643 2.068 2.016 2.012 2.009
17246 2.168 2.037 2.027 2.020
19014 2.384 2.080 2.058 2.040
20963 2.814 2.162 2.114 2.078
23111 3.610 2.308 2.213 2.142
25480 4.991 2.551 2.377 2.246

Write a function that will perform a 2-D interpolation in this table, and
use it to determine the partition function for Hydrogen at the following points
(T, AE): (16000, 0.25), (18500, 1.50), (19000, 0.15), (25023, 1.99).

Exercise 4.7: The study of plasmas is an important field of physics, and

is essential in the understanding of the interiors of stars and the functioning
of fusion reactors. Hydrogen becomes increasingly ionized (hydrogen loses

8

its electron when ionized) with increasing temperature, but the density of
electrons (N,) also plays an important role. The following table gives the
ratio of ionized hydrogen atoms to all forms of hydrogen (neutral + ionized)
as a function of both T' (in kelvins) and NV, (number of electrons per cubic
centimeter). Write a C-function and driver that will interpolate in this table.
The driver should prompt the user for 7' (in kelvins) and N,. Note the table
is tabulated in terms of log V..

Hydrogen Ionization: Ratio of Ionized to Total

log N,

T(K) 10.0 11.0 12.0 13.0 14.0 15.0 16.0 17.0

1000.0 | 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
2000.0 | 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
3000.0 | 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
4000.0 | 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
5000.0 | 0.0017 0.0002 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
6000.0 | 0.2980 0.0407 0.0042 0.0004 0.0000 0.0000 0.0000 0.0000
7000.0 | 0.9582 0.6961 0.1864 0.0224 0.0023 0.0002 0.0000 0.0000
8000.0 [0.9979 0.9791 0.8241 0.3191 0.0448 0.0047 0.0005 0.0000
9000.0 | 0.9998 0.9980 0.9804 0.8335 0.3335 0.0477 0.0050 0.0005
10000.0 | 1.0000 0.9997 0.9971 0.9713 0.7719 0.2529 0.0327 0.0034
11000.0 | 1.0000 0.9999 0.9994 0.9939 0.9425 0.6211 0.1408 0.0161
12000.0 | 1.0000 1.0000 0.9998 0.9984 0.9841 0.8606 0.3817 0.0581
13000.0 | 1.0000 1.0000 0.9999 0.9995 0.9948 0.9503 0.6568 0.1607
14000.0 | 1.0000 1.0000 1.0000 0.9998 0.9980 0.9807 0.8358 0.3373
15000.0 | 1.0000 1.0000 1.0000 0.9999 0.9992 0.9917 0.9229 0.5448

