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Abstract. We study the complexity of generic reals for computable Mathias
forcing in the context of computability theory. The n-generics and weak n-
generics form a strict hierarchy under Turing reducibility, as in the case of
Cohen forcing. We analyze the complexity of the Mathias forcing relation,

and show that if G is any n-generic with n ≥ 2 then it satisfies the jump
property G(n−1) ≡T G′ ⊕ ∅(n). We prove that every such G has generalized
high Turing degree, and so cannot have even Cohen 1-generic degree. On the

other hand, we show that every Mathias n-generic real computes a Cohen
n-generic real.

1. Introduction

Forcing has been a central technique in computability theory since it was intro-
duced (in the form we now call Cohen forcing) by Kleene and Post to exhibit a
degree strictly between 0 and 0′. The study of the algorithmic properties of Cohen
generic reals, and of the structure of their degrees, has long been a rich source of
problems and results. In the present article, we propose to undertake a similar
investigation of generic reals for (computable) Mathias forcing, and present some
of our initial results in this direction.

The Mathias forcing partial order is defined as follows.

Definition 1.1. A condition is a pair (D,E) where D is a finite subset of ω, E is
an infinite such subset, and maxD < minE. A condition (D∗, E∗) extends (D,E)
if D ⊆ D∗ ⊆ D ∪ E and E∗ ⊆ E.

Intuitively, the finite set D represents a commitment of information, positive and
negative, about a set to be constructed, and E represent a commitment of negative
information alone. Thus, for instance, the condition ({5, 6}, {9, 11, 13, . . .}) commits
our set to contain 5 and 6, but no other even numbers, or odd numbers less than 9.

Mathias forcing gained prominence in set theory in the article [10], for whose
author it has come to be named. In a restricted form, it was used even earlier
by Soare [15], to build an infinite set with no subset of strictly higher Turing
degree. In computability theory, it has subsequently become a prominent tool for
constructing infinite homogeneous sets for computable colorings of pairs of integers,
as in Seetapun and Slaman [12], Cholak, Jockusch, and Slaman [3], and Dzhafarov
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and Jockusch [6]. It has also found applications in algorithmic randomness, in
Binns, Kjos-Hanssen, Lerman, and Solomon [1].

Our interest below will be in computable Mathias forcing, where the conditions
are pairs (D,E) such that E is an infinite computable set. Other effective variants
have been studied in the literature, such as when E is low or low2, and many of
our techniques below can be appropriately modified to obtain analogous results for
these versions. We shall show below that a number of results for Cohen genericity
hold also for Mathias genericity, but that a number of important ones do not. The
main source of distinction, as we shall see, is that neither the partial order, nor
the forcing relation, is computable in this setting, so many usual techniques do not
carry over.

The article is organized as follows. In Section 2, we lay out a framework for
working with Mathias forcing in computability theory, and use it to prove some
basic results about Mathias generics, in addition to listing several previously known
ones. In Section 3 we define and study the Mathias forcing relation, and characterize
the complexity of forcing arithmetical formulas according to their quantifier depth.
Section 4 proves a number of results concerning the Turing degrees of Mathias
generic reals, including that they are all generalized high. In Section 5, we then
prove that, level by level, Mathias generic reals compute Cohen generic reals.

We refer the reader to Soare [14] for general background on computability theory.

2. Definitions and basic results

We assume familiarity with the basics of forcing in arithmetic, as presented, e.g.,
in Shore [13, Chapter 3]. Throughout, Cohen forcing will refer to the space of
finite binary strings, 2<ω, partially ordered by the usual extension relation, ⪯. For
further background on Cohen forcing specifically, see [4, Section 1.24].

Formalizing Definition 1.1 in the setting of computability theory requires some
care. A slightly different presentation is given in [1, Section 6], over which ours has
the benefit of reducing the complexity of the set of conditions from Σ0

3 to Π0
2.

Definition 2.1.

(1) A (computable Mathias) pre-condition is a pair (D,E) where D is a finite
set, E is a computable set, and maxD < minE.

(2) A (computable Mathias) condition is a pre-condition (D,E), such that E
is infinite.

(3) A pre-condition (D∗, E∗) extends a pre-condition (D,E), written (D∗, E∗) ≤
(D,E), if D ⊆ D∗ ⊆ D ∪ E and E∗ ⊆ E.

(4) A set A satisfies a pre-condition (D,E) if D ⊆ A ⊆ D ∪ E.

We say (D∗, E∗) ≤ (D,E) is a finite extension if E − E∗ is finite.
By an index for a pre-condition (D,E) we shall mean a pair (d, e) such that d

is the canonical index of D and E = {x : Φe(x) ↓= 1}. We adopt the convention
that for all x, if Φe(x) ↓ then Φe(y) ↓∈ {0, 1} for all y ≤ x. Thus, if E is infinite,
i.e., if (D,E) is a condition, then Φe is total. Of course, if E is finite then Φe may
only be partial, in which case it will be defined on a proper initial segment of ω.

The definition makes the set of all indices Π0
1. However, we can pass to a com-

putable subset containing an index for every pre-condition. Namely, define a strictly
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increasing computable function g by

Φg(d,e)(x) =

{
0 if x ≤ maxDd,

Φe(x) otherwise.

Then the set of pairs of the form (d, g(d, e)) is computable, and each is an index for
a pre-condition. Moreover, if (d, e) is such an index as well, then it and (d, g(d, e))
are indices for the same pre-condition. Though we shall not be explicit about it,
all our references to pre-conditions in the sequel should formally be regarded as
references to indices from this set. Further, for notational convenience, we shall
sometimes identify a pre-condition (D,E) with its index, thereby treating D and
E as numbers.

Note that whether one pre-condition extends another is a Π0
2 question. By our

convention about partial computable functions, the same question for conditions is
readily seen to be Π0

1.
In what follows, a Σ0

n set of conditions refers to a Σ0
n-definable set of pre-

conditions, each of which is a condition. (This is not the same as the set of all
conditions satisfying a given Σ0

n definition, as discussed further in the next section.
See also Remark 2.3.) As usual, we call a set of conditions dense if it contains an
extension of every condition.

Definition 2.2. Fix n ∈ ω.
(1) A set A meets a set C of conditions if it satisfies some member of C.
(2) A set A avoids a set C of conditions if it meets the set of conditions having

no extension in C.
(3) A set G isMathias n-generic if it meets or avoids every Σ0

n set of conditions.
(4) A set G is weakly Mathias n-generic if it meets every dense such set.

We call a set generic if it is n-generic for all n. We call a degree n-generic, or
generic, if it contains an n-generic, or generic, set.

Remark 2.3. A more typical approach would be to define n-genericity via the
meeting or avoiding of all sets that are Σ0

n relative to the complexity of the forcing
partial order. (See, e.g., [13], Definition 3.2.7.) For our purposes, n-genericity in
this sense corresponds to (n+2)-genericity according to Definition 2.2, and as such
is a distinction in notation only. We prefer our definition because it will make
clearer the connections between Mathias and Cohen genericity that we establish in
the sequel, particularly Theorem 5.2.

The following proposition is the analogue of Lemma 2.6 (i) of [7]. The proof
is essentially the same, but some small care needs to be taken since the set of
conditions here is not computable.

Proposition 2.4. For each n ≥ 2, there is a Mathias n-generic G with G′ ≤T ∅(n).

Proof. Let (D0, E0) = (∅, ω), and suppose that we have defined (De, Ee) for some
e ≥ 0. First, let (D∗, E∗) ≤ (De, Ee) be a finite extension that forces the jump,

which is straightforward. Then consider W ∅(n−1)

e . Ask if all pre-conditions (D,E)
in this set have E infinite, which is a Π0

n question since n ≥ 2. If so, and if there
is some pre-condition (D,E) ≤ (D∗, E∗) in this set, let (De+1, Ee+1) be some such
extension. Otherwise, let (De+1, Ee+1) = (D∗, E∗). In the end, G =

∪
eDe is the

desired generic. □
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We pass to some other basic properties of generics. We refer to Mathias n-generics
below simply as n-generics when no confusion is possible.

Note that the set of all conditions is Π0
2. Thus, the set of conditions satisfying a

given Σ0
n definition is Σ0

n if n ≥ 3, and Σ0
3 otherwise. For n < 3, we may thus wish

to consider the following stronger form of genericity, which has no analogue in the
case of Cohen forcing (or forcing in general).

Definition 2.5. A set G is strongly n-generic if, for every Σ0
n-definable set of pre-

conditions P, either G satisfies some condition in P or G meets the set of conditions
not extended by any condition in P.

Proposition 2.6. For n ≥ 3, a set is strongly n-generic if and only if it is n-
generic. For n ≤ 2, a set is strongly n-generic if and only if it is 3-generic.

Proof. Evidently, every strongly n-generic set is n-generic. Now suppose P is a Σ0
n

set of pre-conditions, and let C consist of all the conditions in P. An infinite set
meets or avoids P if and only if it meets or avoids C, so every max{n, 3}-generic
set meets or avoids P. For n ≥ 3, this means that every n-generic set is strongly
n-generic, and for n ≤ 2 that every 3-generic set is strongly n-generic.

It remains to show that every strongly 0-generic set is 3-generic. Let C be a
given Σ0

3 set of conditions, and let R be a computable relation such that (D,E)
belongs to C if and only if (∃a)(∀x)(∃y)R(D,E, a, x, y). Define a strictly increasing
computable function g by

Φg(D,E,a)(x) =

{
ΦE(x) if (∃y)R(D,E, a, x, y) and ΦE(x) ↓,
↑ otherwise,

and let P be the computable set of all pre-conditions of the form (D, g(D,E, a)).
If (D,E) ∈ C then ΦE is total and so there is an a such that Φg(D,E,a) = ΦE . If, on
the other hand, (D,E) is a pre-condition not in C then for each a there is an x such
that Φg(D,E,a)(x) ↑. Thus, the members of C are precisely the conditions in P, so
an infinite set meets or avoids C if and only if it meets or avoids P. In particular,
every strongly 0-generic set meets or avoids C. □

As a consequence, we shall restrict ourselves to 3-genericity or higher from now
on, or at most weak 2-genericity. (This is also reasonable from the point of view of
Remark 2.3.) Unless otherwise noted, n below will always be a number ≥ 3.

Proposition 2.7. Every n-generic real is weakly n-generic, and every weakly n-
generic real is (n− 1)-generic.

Proof. The first implication is clear. For the second, let a Σ0
n−1 set C of conditions

be given. Let D be the set of all conditions that are either in C or else have no
extension in C, which is clearly dense. If n ≥ 4, then D is easily seen to be Σ0

n

(actually Π0
n−1) as saying a condition (D,E) has no extension in C is written

∀(D∗, E∗)[[(D∗, E∗) is a condition ∧ (D∗, E∗) ≤ (D,E)] =⇒ (D∗, E∗) /∈ C].
If n = 3, this makes D appear to be Σ0

4 but since C is a set of conditions only, we
can re-write the antecedent of the above implication as

D ⊆ D∗ ⊂ D ∪ E ∧ (∀x)[ΦE∗(x) ↓= 1 ∧ ΦE(x) ↓ =⇒ ΦE(x) = 1]

to obtain an equivalent Σ0
3 definition. In either case, then, a weakly n-generic real

must meet D, and hence must either meet or avoid C. □
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The proof of the following proposition is straightforward. (The first half is proved
much like its analogue in the Cohen case. See, e.g., [9], Corollary 2.7.)

Proposition 2.8. Every weakly n-generic real G is hyperimmune relative to ∅(n−1).
If G is n-generic, then its degree forms a minimal pair with 0(n−1).

Corollary 2.9. Not every n-generic real is weakly (n+ 1)-generic.

Proof. Take any n-generic G ≤T ∅(n). Then G is not hyperimmune relative to
∅(n+1), and so cannot be weakly (n+ 1)-generic. □

We shall separate weakly n-generic reals from n-generic reals in Section 4, thereby
obtaining a strictly increasing sequence of genericity notions

weakly 3-generic ← 3-generic ← weakly 4-generic ← · · ·
as in the case of Cohen forcing. In many other respects, however, the two types of
genericity are very different. For instance, as noted in [3, Section 4.1], every Mathias
generic G is cohesive, i.e., satisfies G ⊆∗ W or G ⊆∗ W for every computably
enumerable set W . In particular, if we write G = G0 ⊕G1 then one of G0 or G1 is
finite. This is false for Cohen generics, which, by an analogue of van Lambalgen’s
theorem, have relatively n-generic halves (see [16], Proposition 2.2). Thus, no
Mathias generic can be even Cohen 1-generic.

Another basic fact is that every Mathias n-generic G is high, i.e., satisfies G′ ≥T

∅′′. (See [1], Corollary 6.7, or [3], Section 5.1 for a proof.) We shall extend this
result in Theorem 4.5 below. By contrast, it is a well-known result of Jockusch [7,
Lemma 2.6 (ii)] that every Cohen n-generic real G satisfies G(n) ≡T G ⊕ ∅(n). As
no high set G can satisfy G′′ ≤T G ⊕ ∅′′, it follows that no Mathias generic can
have even Cohen 2-generic degree. This does not prevent a Mathias n-generic from
having Cohen 1-generic degree, as there are high 1-generic reals. However, we shall
show that this does not happen either in Corollary 5.1. However, in Section 5 we
shall see that every Mathias n-generic degree bounds a Cohen n-generic degree.

3. Complexity of the forcing relation

Much of the discrepancy between Mathias and Cohen genericity stems from the
fact that the complexity of forcing a given arithmetical formula does not agree with
the complexity of that formula, as we now show. We work in the usual forcing
language, consisting of the language of second-order arithmetic, augmented by a
new set constant Ġ intended to denote the generic real.

We regard every Σ0
0 (i.e., bounded quantifier) formula φ with no free number

variables as being written in disjunctive normal form according to some fixed ef-
fective procedure for doing so. Call a disjunct valid if the conjunction of all the
equalities and inequalities in it is true, which can be checked computably. For each
i (ranging over the number of valid disjuncts), let Pφ,i be the set of all n such that
n ∈ X is a conjunct of the ith valid disjunct, and Nφ,i the set of all n such that
n /∈ X is a conjunct of the ith valid disjunct. Canonical indices for these sets can
be determined uniformly effectively from an index for φ.

Definition 3.1. We define the (strong) forcing relation, ⊩, for Mathias forcing
recursively as follows. Let (D,E) be a condition and let φ(X) be a formula with
only the set variable X free.

(1) If φ is Σ0
0, then (D,E) ⊩ φ(Ġ) if for some i, Pφ,i ⊆ D and Nφ,i ⊆ D ∪ E.
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(2) If φ = ¬ψ, then (D,E) ⊩ φ(Ġ) if there is no (D∗, E∗) ≤ (D,E) such that

(D∗, E∗) ⊩ ψ(Ġ).

(3) If φ = ψ0 ∨ ψ1, then (D,E) ⊩ φ(Ġ) if (D,E) ⊩ ψ0(Ġ) or (D,E) ⊩ ψ1(Ġ).

(4) If φ = (∃x)ψ(x,X) then (D,E) ⊩ φ(Ġ) if (D,E) ⊩ ψ(n, Ġ) for some n ∈ ω.
We say (D,E) forces φ(Ġ) if (D,E) ⊩ φ(Ġ).

The above definition can also be obtained from a general one for forcing notions in
the abstract, by the introduction of a valuation map. This is a monotone function
V from the forcing partial order into 2<ω such that for each n ∈ ω, the conditions
p with |V (p)| ≥ n are dense. (See, e.g., [13, Definition 3.2.3] or [5, Section 3].)
For Mathias forcing, the appropriate such V is defined by letting V ((D,E)) be the
string σ of length minE with σ(x) = 1 if and only if x ∈ D.

Remark 3.2. If φ(X) is Σ0
0 with only the set variable X free and A is a set then

φ(A) holds if and only if there is an i such that Pφ,i ⊆ A and Nφ,i ⊆ A. Hence,

(D,E) ⊩ φ(Ġ) if and only if φ(D ∪ F ) holds for all finite F ⊂ E.

Lemma 3.3. Let (D,E) be a condition and let φ(X) be a formula in exactly one
free set variable.

(1) If φ is Σ0
0 with no free number variables then the relation (D,E) ⊩ φ(Ġ) is

computable.
(2) If φ is Π0

1, Σ
0
1, or Σ0

2, then so is the relation (D,E) ⊩ φ(Ġ).

(3) For n ≥ 2, if φ is Π0
n then the relation of (D,E) ⊩ φ(Ġ) is Π0

n+1.

(4) For n ≥ 3, if φ is Σ0
n then the relation (D,E) ⊩ φ(Ġ) is Σ0

n+1.

Proof. We first prove 1. If φ is as hypothesized and φ(D ∪ F ) does not hold
for some finite F ⊂ E, then neither does φ(D ∪ (F ∩ (

∪
i Pφ,i ∪ Nφ,i))). So by

Remark 3.2, we have that (D,E) ⊩ φ(Ġ) if and only if φ(D∪F ) holds for all finite
F ⊂ E ∩ (

∪
i Pφ,i ∪Nφ,i), which can be checked computably.

For 2, suppose that φ(X) ≡ (∀x)θ(x,X), where θ is Σ0
0. We claim that (D,E)

forces φ(Ġ) if and only if θ(a,D ∪ F ) holds for all a and all finite F ⊂ E, which
makes the forcing relation Π0

1. The right to left implication is clear. For the other,
suppose there is an a and a finite F ⊂ E such that θ(a,D ∪ F ) does not hold.
Writing θa(X) for the formula θ(a,X), let D∗ = D ∪ F and

E∗ = {x ∈ E : x > maxD ∪ F ∪
∪
i

Pθa,i ∪Nθa,i},

so that (D∗, E∗) is a condition extending (D,E). Then if (D∗∗, E∗∗) is any exten-
sion of (D∗, E∗), we have that

D∗∗ ∩ (
∪
i

Pθa,i ∪Nθa,i) = (D ∪ F ) ∩ (
∪
i

Pθa,i ∪Nθa,i),

and so θ(a,D∗∗) cannot force θ(a, Ġ). Thus (D,E) does not force φ(Ġ). The rest
of 2 follows immediately, since forcing a formula that is Σ0

1 over another formula is
Σ0

1 over the complexity of forcing that formula.
We next prove 3 for n = 2. Suppose that φ(X) ≡ (∀x)(∃y)θ(x, y,X) where θ is

Σ0
0. Our claim is that (D,E) ⊩ φ(Ġ) if and only if, for every a and every condition

(D∗, E∗) extending (D,E), there is a finite F ⊂ E∗ and a number k > maxF such
that

(1) (D∗ ∪ F, {x ∈ E∗ : x > k}) ⊩ (∃y)θ(a, y, Ġ),
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which is a Π0
3 definition. Since the condition on the left side of (1) extends (D∗, E∗),

this definition clearly implies forcing. For the opposite direction, suppose (D,E) ⊩
φ(Ġ) and fix any a and (D∗, E∗) ≤ (D,E). Then by definition, there is a b and

a condition (D∗∗, E∗∗) extending (D∗, E∗) that forces θ(a, b, Ġ). Write θa,b(X) =
θ(a, b,X), and let F ⊂ E∗ be such that D∗∗ = D∗ ∪ F . Since θa,b(D

∗ ∪ F ) holds,
we must have Pθa,b,i ⊆ D∗ ∪ F and Nθa,b,i ∩ (D∗ ∪ F ) = ∅ for some i. Thus, if we
let k = maxNθa,b,i, we obtain (1).

To complete the proof, we prove 3 and 4 for n ≥ 3 by simultaneous induction on
n. Clearly, 3 for n− 1 implies 4 for n, so we already have 4 for n = 3. Now assume
4 for some n ≥ 3. The definition of forcing a Π0

n+1 statement is easily seen to be Π0
2

over the relation of forcing a Σ0
n statement, and hence Π0

n+2 by hypothesis. Thus,
3 holds for n+ 1. □

We shall see in Corollary 4.2 in the next section that the complexity bounds in
parts 3 and 4 of the lemma cannot be lowered to Σ0

n and Π0
n, respectively. As a

consequence, n-generics only decide all Σ0
n−1 formulas, and not necessarily all Σ0

n

formulas.
We conclude this section with a standard result about forcing implying truth.

The proof, too, is standard, but relies on the complexity bounds from Lemma 3.3
and some of the particulars of our formalism. Thus, we include the details.

Proposition 3.4. Let G be n-generic, and for m ≤ n let φ(X) be a Σ0
m or Π0

m

formula in exactly one free set variable. If (D,E) is any condition satisfied by G

that forces φ(Ġ), then φ(G) holds.

Proof. If m = 0, then φ holds of any set satisfying (D,E), whether it is generic
or not. If m > 0 and the result holds for Π0

m−1 formulas, it also clearly holds for
Σ0

m formulas. Thus, we only need to show that if m > 0 and the result holds for
Σ0

m−1 formulas then it also holds for Π0
m formulas. To this end, suppose φ(X) ≡

(∀x)θ(x,X), where θ is Σ0
m−1. For each a, let Ca be the set of all conditions forcing

θ(a, Ġ), which has complexity at most Σ0
n by Lemma 3.3. Hence, G meets or

avoids each Ca. But if G were to avoid some Ca, say via a condition (D∗, E∗), then

(D∗, E∗) would force ¬θ(a, Ġ), and then (D,E) and (D∗, E∗) would have a common

extension forcing θ(a, Ġ) and ¬θ(a, Ġ). Thus, G meets every Ca, so θ(a,G) holds
for all a by hypothesis, meaning φ(G) holds. □
Remark 3.5. It is not difficult to see that if φ(X) is the negation of a Σ0

m formula

then any condition (D,E) forcing φ(Ġ) forces an equivalent Π0
m formula. Thus, if

G is n-generic and satisfies such a condition, then φ(G) holds.

4. Jumps of Mathias generic degrees

We begin here with a jump property for Mathias generics similar to the afore-
mentioned one of Jockusch [7, Lemma 2.6 (ii)] for Cohen generics. It follows that
the degrees d satisfying d(n−1) = d′ ∪ 0(n−1) yield a strict hierarchy of subclasses
of the high degrees.

Theorem 4.1. For all n ≥ 2, if G is n-generic then G(n−1) ≡T G′ ⊕ ∅(n).

Proof. That G(n−1) ≥T G′ ⊕∅(n) follows from the fact that G is high, as discussed
above. That G(n−1) ≤T G′ ⊕ ∅(n) is trivial for n = 2. To show it for n ≥ 3, we

wish to decide every Σ0,G
n−1 sentence using G′ ⊕ ∅(n). Let φ0(X), φ1(X), . . ., be a
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computable enumeration of all Σ0
n−1 sentences in exactly one free set variable, and

for each i let Ci be the set of conditions forcing φi(Ġ), and Di the set of conditions

forcing ¬φi(Ġ). Then Di is the set of conditions with no extension in Ci, so if G
meets Ci it cannot also meet Di. On the other hand, if G avoids Ci then it meets
Di by definition. Now by Lemma 3.3, each Ci is Σ0

n since n ≥ 3, and so it is met
or avoided by G. Thus, for each i, either G meets Ci, in which case φi(G) holds by
Proposition 3.4, or else G meets Di, in which case ¬φi(G) holds by Remark 3.5. To
conclude the proof, we observe that G′ ⊕ ∅(n) can decide, uniformly in i, whether
G meets Ci or Di. Indeed, from a given i, indices for Ci and Di (as a Σ0

n set and a
Π0

n set, respectively) can be found uniformly computably, and then ∅(n) has only
to produce these sets until a condition in one is found that is satisfied by G, which
can in turn be determined by G′. □

Corollary 4.2. For every n ≥ 2 there is a Π0
n formula in exactly one free set

variable, the relation of forcing which is not Π0
n. For every n ≥ 3 there is a Σ0

n

formula in exactly one free set variable, for which the forcing relation is not Σ0
n.

Proof. It suffices to prove the second part, as it implies the first by the proof of
Lemma 3.3. For consistency with Theorem 4.1, we fix n ≥ 4 and prove the result
for n− 1. If forcing every Σ0

n−1 formula were Σ0
n−1, then the proof of the theorem

could be carried out computably in G′ ⊕ ∅(n−1) instead of G′ ⊕ ∅(n). Hence, we
would have G(n−1) ≡T G′ ⊕ ∅(n−1), contradicting that G must be high. □

The following result is the analogue of Theorem 2.3 of Kurtz [9] that every
A >T ∅(n−1) hyperimmune relative to ∅(n−1) is Turing equivalent to the (n − 1)st
jump of a weakly Cohen n-generic real. The proof, although mostly similar, requires
a few important modifications. The main problem is in coding A into G(n−2),
which, in the case of Cohen forcing, is done by appending long blocks of 1s to
the strings under construction. As the infinite part of a Mathias condition can
be made very sparse, we cannot use the same idea here. Recall that a set is co-
immune if its complement has no infinite computable subset. Also, let pA denote
the principal function of the set A, i.e., the function that enumerates the elements
of A in increasing order.

Proposition 4.3. If A >T ∅(n−1) is hyperimmune relative to ∅(n−1), then A ≡T

G(n−2) for some weakly n-generic real G.

Proof. Computably in A, we build a sequence (D0, E0) ≥ (D1, E1) ≥ · · · of condi-
tions, beginning with (D0, E0) = (∅, ω). Let C0, C1, . . . be a listing of all Σ0

n sets of
pre-conditions, and fixing a ∅(n−1)-computable enumeration of each Ci, let Ci,s be
the set of all pre-conditions enumerated into Ci by stage pA(s). We may assume that
(D,E) ≤ s for all (D,E) ∈ Ci,s. Let B0, B1, . . . be a uniformly ∅(n−1)-computable
sequence of pairwise disjoint co-immune sets. Say Ci requires attention at stage
s if there exists b ≤ pA(s) in Bi ∩ Es and a condition (D,E) in Ci,s extending
(Ds ∪ {b}, {x ∈ Es : x > b}).

Construction. At stage s, assume (Ds, Es) is given. If there is no i ≤ s such that Ci
requires attention at stage s, we simply set (Ds+1, Es+1) = (Ds, Es). So suppose
otherwise. The construction divides into three steps.
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Step 1. Fix the least i such that Ci requires attention and that we have not yet
acted for, and choose the least corresponding b and earliest enumerated extension
(D,E) in Ci,s. Let (D∗, E∗) = (D,E).

Step 2. Obtain (D∗∗, E∗∗) from (D∗, E∗) by forcing the jump, in the usual manner.

Step 3. Let k be the least bit of A not yet coded. (By construction, this will be
the number of stages t < s such that (Dt, Et) ̸= (Dt+1, Et+1).) Let (D∗∗∗, E∗∗∗) =
(D∗∗ ∪ {c}, {x ∈ E∗∗ : x > c}), where c is the least element of BA(k) ∩ E∗∗, which
exists since BA(k) must intersect every computable set infinitely often.

Finally, if (D∗∗∗, E∗∗∗) ≤ s + 1 let (Ds+1, Es+1) = (D∗∗∗, E∗∗∗) and say that we
have acted for the i from Step 1. Otherwise, let (Ds+1, Es+1) = (Ds, Es).

Verification. Clearly, the entire construction is A-computable. To see that G =∪
sDs is weakly n-generic, fix i and assume that each Cj with j < i requires

attention at most finitely often. Let h be the partial ∅(n−1)-computable function
where h(s) is the least t so that for each (D,E) with (D,E) ≤ s there exists b ≤ t
in Bi ∩ E and (D∗, E∗) ∈ Ci,t extending (D ∪ {b}, {x ∈ E : x > b}). If Ci is dense
then h is total, and so it is infinitely often escaped by pA. Thus, at some sufficiently
large stage, Ci will require attention and no Cj with j < i will. We will then act for
i under step 1 of some appropriately large subsequent stage, thus ensuring that G
meets Ci, and that Ci never requires attention again.

That G(n−2) ≤T A follows by Theorem 4.1 from G′ being forced at step 2 of
the construction, which ensures that G′ ≤T A. So it remains only to show that
A ≤T G(n−2). Let s0 < s1 < · · · be all the stages s > 0 such that (Ds−1, Es−1) ̸=
(Ds, Es). (In other words, these are the stages at which code new bits of A.)
The sequence (Ds0 , Es0) > (Ds1 , Es1) · · · can be computed by G(n−2) as follows.
Given (Dsk , Esk), the least b ∈ G−Dsk must belong to some Bi, and since G(n−2)

computes ∅(n−1) it can tell which Bi. Then G
(n−2) can produce Ci until it finds the

first (D∗, E∗) extending (Dsk ∪{b}, {x ∈ Esk : x > b}), and then obtain (D∗∗, E∗∗)
from (D∗, E∗) by forcing the jump. By construction, G satisfies (D∗∗, E∗∗) and
(Dsk+1

, Esk+1
) = (D∗∗ ∪ {c}, {x ∈ E∗∗ : x > c}) for the least c ∈ G −Dsk+1

. And
this c is in B1 or B0 depending as k is or is not in A. □

Corollary 4.4. Not every weakly n-generic real is n-generic.

Proof. By the previous proposition, ∅(n) ≡T G(n−2) for some weakly n-generic real
G. By Theorem 4.1, if G were n-generic we would have ∅(n+1) ≡T G(n−1) ≡T

G′ ⊕ ∅(n) ≡T ∅(n), which cannot be. □

Our final result in this section extends the fact, referenced above, that all Mathias
generics are high. Recall that GH1, the class of generalized high degrees, consists of
all d with d′ = (d∪0′)′. Every degree in this class is obviously high, but the converse
in general holds only for degrees d ≤ 0′. Note that the usual proof of highness for
Mathias genericity proceeds by thinning the infinite parts of conditions so as to
eventually dominate all computable functions, and then appealing to Martin’s high
domination theorem. By contrast, the theorem below is proved by directly using
the complexity of the forcing relation.

Theorem 4.5. If G is n-generic then it has degree in GH1, i.e., G
′ ≡T (G⊕∅′)′.
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Proof. A condition (D,E) forces i ∈ (G⊕ ∅′)′ if there is a σ ∈ 2<ω such that that
Φσ

i (i) ↓ and for all x < |σ|,
σ(x) = 1 =⇒ (D,E) ⊩ x ∈ G⊕ ∅′;
σ(x) = 0 =⇒ (D,E) ⊩ x /∈ G⊕ ∅′.

This is thus a Σ0
2 relation, as forcing x ∈ G ⊕ ∅′ and x /∈ G ⊕ ∅′ are Σ0

1 and
Π0

1, respectively, by Lemma 3.3. We claim that (D,E) forcing i /∈ (G ⊕ ∅′)′, i.e.,
¬(i ∈ (G ⊕ ∅′)′), is equivalent to (D,E) having no finite extension that forces
i ∈ (G⊕ ∅′)′, and hence is Π0

2. That forcing implies this fact is clear. In the other
direction, suppose (D,E) does not force i /∈ (G ⊕ ∅′)′, and so has an extension
(D∗, E∗) that forces i ∈ (G ⊕ ∅′)′. Let σ witness this fact, as above. Then if P
and N consist of the x < |σ| such that σ(2x) = 1 and σ(2x) = 0, respectively, σ
witnesses that (D ∪ P, {x ∈ E : x > maxP ∪N}) also forces i ∈ (G⊕ ∅′)′.

We now show that G′ ≥T (G ⊕ ∅′)′. Let Ci be the set of conditions that force
i ∈ (G ⊕ ∅′)′, and Di the set of conditions that force i /∈ (G ⊕ ∅′)′. Then Ci is Σ0

3

and Di is Π
0
2, and indices for them as such can be found uniformly from i. Each Ci

must be either met or avoided by G, and as in the proof of Theorem 4.1, G meets Ci
if and only if it does not meet Di. Which of the two is the case can be determined
by G′ since G′ ≥T ∅′′ and Ci and Di are both c.e. in ∅′′. By Proposition 3.4, G′ can
thus determine whether i ∈ (G⊕ ∅′)′, as desired. □

5. Relationship with Cohen genericity

We close by directly looking at how Mathias and Cohen generics compare to
one another. As remarked at the end of Section 2, no Mathias n-generic set can
have Cohen 2-generic degree. Theorem 4.5 above allows us to conclude the same
for Cohen 1-genericity. Namely, since no GH1 degree d can satisfy d′ = d ∪ 0′, it
cannot be Cohen 1-generic.

Corollary 5.1. No Mathias n-generic degree is even Cohen 1-generic.

Thus, the degree classes of the two types of genericity are disjoint.
In terms of Turing reducibility, rather than equivalence, the situation is more

complex. Obviously, for each n there is a Cohen n-generic, namely a ∅(n)-computable
one, that computes no Mathias generic, since the latter generics are all high. In
the other direction, recall that GLn is the class of degrees d satisfying d(n) =
(d ∪ 0′)(n−1). It was shown by Jockusch and Posner [8, Corollary 7] that every
GL2 degree bounds a 1-generic degree. Since this class includes every GH1 degree,
it follows by Theorem 4.5 that every Mathias n-generic computes a Cohen 1-generic.
For our final result, we show that this can be strengthened to Cohen n-genericity.

Theorem 5.2. Every Mathias n-generic real computes a Cohen n-generic real.

Note that we cannot just code each finite string σ by the condition (D,E) with
D = {x < |σ| : σ(x) = 1} and E = {x : x ≥ |σ|}, and have the generics line up.
This would only be the case if the Mathias generic met and avoided all relevant
sets by means of conditions of this form, but of course this will not be the case, as
conditions of this form are not dense among all the conditions. In fact, we have the
following proposition emphasizing this distinction.

Proposition 5.3. If G is Mathias n-generic and H is Cohen n-generic then H is
not many-one reducible to G.
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Proof. Seeking a contradiction, suppose f is a computable function such that
f(H) ⊆ G and f(H) ⊆ G. The set of conditions (D,E) with E ⊆ ran(f) is Σ0

3-
definable, and must be met by G else G ∩ ran(f) would be finite and H would be
computable. So fix a condition (D,E) in this set satisfied by G. For all a > maxD,
we then have that a ∈ G if and only if a ∈ E and f−1(a) ⊆ H. It follows that
G ≤T H, and hence that G ≡T H, which cannot be. □

Theorem 5.2 is even more surprising because its analog in set theory is known to
be false. (In the set-theoretic context, there is no restriction that the infinite part
E of a condition (D,E) be computable. Rather, the infinite parts are taken to be
elements of a fixed Ramsey ultrafilter.) Indeed, Miller [11, Section 6] showed that
adding a Mathias generic real to a transitive model of ZFC does not add a Cohen
generic real.

We now proceed to the proof of the theorem.

Proof of Theorem 5.2. We approximate ∅(n) by approximating iterations of the
jump operator. We fix a uniform way of approximating the jump of a set, and
for all m > 1, define

∅(m)[s0, . . . , sm−1] = (∅(m−1)[s0, . . . , sm−2])
′[sm−1]

by induction. Note that for each x and e, there exist arbitrarily large s0, . . . , sn−1

such that
∅(n) ↾ x = ∅(n)[s0, . . . , sn−1] ↾ x

and
W ∅(n)

e ↾ x =W ∅(n)

e [s0, . . . , sn−1] ↾ x =W ∅(n)[s0,...,sn−1]
e [sn−1] ↾ x.

In fact, we may choose such s0, . . . , sn−1 in any infinite set.
We now wish to define a Turing functional Γ with which to convert Mathias

n-generics into Cohen n-generics. For convenience, we regard such a functional as
a partial computable map from finite sets under extension to 2<ω, with domain
closed under initial segment. As is customary, we write ΓF in place of Γ(F ), with
ΓF = τ representing that ΓF (x) ↓= σ(x) for all x < |σ|, with use bounded by
maxF .

Construction. Define Γ∅ = ∅, and suppose F is a given finite set. Let F0 be the
longest initial segment of F of size a multiple of n, and assume by induction that
ΓF0 = σ has been defined. If the size of F is itself not a multiple of n, set ΓF =
σ. Otherwise, F = F0 ∪ {s0, . . . , sn−1} for some distinct numbers s0, . . . , sn−1 >
maxF0. Then let

ΓF =

{
(µτ ⪰ σ)[τ ∈W ∅(n)

e [s0, . . . , sn−1]] if (∃τ ⪰ σ)[τ ∈W ∅(n)

e [s0, . . . , sn−1]],

σ otherwise.

Verification. In the construction, we are effectively thinking of each consecutive
block of n many elements in F as defining a string. The key observation here is the
following. Suppose that {s0, . . . , sn−1} is such a block in F , and that the string σ

defined by the previous block has an extension τ in W ∅(n)

e . Then provided that

(2) W ∅(n)

e ↾ τ + 1 =W ∅(n)

e [s0, . . . , sn−1] ↾ τ + 1,

i.e., provided that s0, . . . , sn−1 yields a correct approximation of W ∅(n)

e on this τ ,

then the block {s0, . . . , sn−1} will define an extension of σ in W ∅(n)

e .
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We claim that if G is a Mathias n-generic real then ΓG is Cohen n-generic. To see
this, fix e ∈ ω, and observe that the set C of conditions (D,E) such that ΓD belongs

to W ∅(n)

e is Σ0
n-definable. We show that if σ = ΓD has an extension in W ∅(n)

e , then
(D,E) has an extension in C. From here the claim follows by genericity, because G

meeting or avoiding C will precisely correspond to ΓG meeting or avoiding W ∅(n)

e .

So fix (D,E), and assume σ = ΓD has an extension τ in W ∅(n)

e . By extending
(D,E) if necessary, we may assume D has size a multiple of n. Note that this can be
done without changing ΓD. Choose s0, . . . , sn−1 ∈ E so that (2) above holds. Then

τ belongs to W ∅(n)

e [s0, . . . , sn−1], so by definition, ΓD∪{s0,...,sn−1} is an extension of

σ in W ∅(n)

e . It follows that

(D ∪ {s0, . . . , sn−1}, {x ∈ E : x > s0, . . . , sn−1})

is an extension of (D,E) in C. This completes the proof. □
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