Reverse Mathematics of Two Theorems of Graph Theory

Jeff Hirst
Appalachian State University
Boone, NC

March 5, 2010

Mathematics Colloquium
College of Charleston
2-coloring graphs

The rule: Vertices connected by an edge must have different colors.
2-coloring graphs

The rule: Vertices connected by an edge must have different colors.
2-coloring graphs

The rule: Vertices connected by an edge must have different colors.
2-coloring graphs

The rule: Vertices connected by an edge must have different colors.
2-coloring graphs

The rule: Vertices connected by an edge must have different colors.
2-coloring graphs

The rule: Vertices connected by an edge must have different colors.
2-coloring graphs

The rule: Vertices connected by an edge must have different colors.
2-coloring graphs

The rule: Vertices connected by an edge must have different colors.

Theorem
Every graph with no cycles of odd length can be 2-colored.
2-coloring graphs

The rule: Vertices connected by an edge must have different colors.

Theorem
Every graph with no cycles of odd length can be 2-colored.

What is the logical strength of this statement?
Reverse Mathematics

Goal: Determine exactly which set existence axioms are needed to prove familiar theorems.

Method: Prove results of the form

\[\text{RCA}_0 \vdash \text{AX} \leftrightarrow \text{THM} \]

where:

- **RCA}_0 is a weak axiom system,
- **AX is a set existence axiom selected from a small hierarchy of axioms, and
- **THM is a familiar theorem.
Why bother?

Work in reverse mathematics can:

• precisely categorize the logical strength of theorems.

• differentiate between different proofs of theorems.

• provide insight into the foundations of mathematics.

• utilize and contribute to work in many subdisciplines of mathematical logic – including proof theory, computability theory, models of arithmetic, etc.
RCA₀

Language:
Integer variables: \(x, y, z \) \hspace{1cm} Set variables: \(X, Y, Z \)

Axioms:
- basic arithmetic axioms
 \((0, 1, +, \times, =, \text{and } < \text{ behave as usual.})\)

- Restricted induction
 \((\psi(0) \land \forall n (\psi(n) \rightarrow \psi(n + 1))) \rightarrow \forall n \psi(n)\)
 where \(\psi(n) \) has (at most) one number quantifier.

- Recursive set comprehension
 If \(\theta \in \Sigma^0_1 \) and \(\psi \in \Pi^0_1 \), and \(\forall n (\theta(n) \leftrightarrow \psi(n)) \),
 then there is a set \(X \) such that \(\forall n (n \in X \leftrightarrow \theta(n)) \)
Models and coding

- The smallest \(\omega \)-model of RCA\(_0\) consists of the usual natural numbers and the computable sets of natural numbers. We write \(\mathcal{M} = \langle \omega, \text{REC} \rangle \).
Models and coding

• The smallest ω-model of RCA$_0$ consists of the usual natural numbers and the computable sets of natural numbers. We write $\mathcal{M} = \langle \omega, \text{REC} \rangle$.

• Elements of countable collections of objects can be identified with natural numbers.
Models and coding

• The smallest ω-model of RCA_0 consists of the usual natural numbers and the computable sets of natural numbers. We write $\mathcal{M} = \langle \omega, \text{REC} \rangle$.

• Elements of countable collections of objects can be identified with natural numbers.

• RCA_0 can prove the arithmetic associated with pairing functions.
Models and coding

- The smallest ω-model of RCA$_0$ consists of the usual natural numbers and the computable sets of natural numbers. We write $M = \langle \omega, \text{REC} \rangle$.

- Elements of countable collections of objects can be identified with natural numbers.

- RCA$_0$ can prove the arithmetic associated with pairing functions.

- Sets of pairs correspond to functions and/or countable sequences.
Models and coding

- The smallest ω-model of RCA$_0$ consists of the usual natural numbers and the computable sets of natural numbers. We write $\mathcal{M} = \langle \omega, \text{REC} \rangle$.

- Elements of countable collections of objects can be identified with natural numbers.

- RCA$_0$ can prove the arithmetic associated with pairing functions.

- Sets of pairs correspond to functions and/or countable sequences.

- Many mathematical concepts can be encoded in terms of such sequences. Second order arithmetic is remarkably expressive.
Examples

Theorem
(RCA$_0$) Every finite graph with no cycles of odd length can be 2-colored.
Examples

Theorem
\((\text{RCA}_0)\) Every finite graph with no cycles of odd length can be 2-colored.

Theorem
\((\text{RCA}_0)\) Every connected graph with no cycles of odd length can be 2-colored.
Weak König’s Lemma

Statement: Big very skinny trees are tall.

More formally: If T is an infinite tree in which each node is labeled 0 or 1, then T contains an infinite path.

The subsystem WKL_0 is RCA_0 plus Weak König’s Lemma.

There is an infinite computable $0 - 1$ tree with no infinite computable path, so $\langle \omega, \text{REC} \rangle$ is not a model of WKL_0.

Conclusion: $\text{RCA}_0 \not\vdash \text{WKL}_0$
Finally! Some reverse mathematics!

Theorem

(RCA₀) The following are equivalent:

1. WKL₀.

2. Every graph with no cycles of odd length can be 2-colored.
WKL\(_0\) implies the 2-coloring theorem

Suppose \(G\) is a graph with vertices \(\nu_0, \nu_1, \nu_2, \ldots\) and no odd cycles.
WKL_0 implies the 2-coloring theorem

Suppose G is a graph with vertices v_0, v_1, v_2, \ldots and no odd cycles.

We need to use a $0 - 1$ tree to cook up a 2-coloring of G.
Suppose G is a graph with vertices v_0, v_1, v_2, \ldots and no odd cycles.

We need to use a $0 - 1$ tree to cook up a 2-coloring of G.

Let T be the tree consisting of sequences of the form $\langle i_0, i_1, \ldots, i_n \rangle$ where the sequence is a correct 2-coloring of the subgraph of G on the vertices v_0, v_1, \ldots, v_n.

Since G has no odd cycles, RCA_0 proves T contains infinitely many nodes.
WKL₀ implies the 2-coloring theorem

Suppose G is a graph with vertices v_0, v_1, v_2, \ldots and no odd cycles.

We need to use a 0 – 1 tree to cook up a 2-coloring of G.

Let T be the tree consisting of sequences of the form $\langle i_0, i_1, \ldots, i_n \rangle$ where the sequence is a correct 2-coloring of the subgraph of G on the vertices v_0, v_1, \ldots, v_n.

Since G has no odd cycles, RCA₀ proves T contains infinitely many nodes.

Any path through T is the desired 2-coloring.
A tool for reversals

Theorem

(RCA$_0$) *The following are equivalent:*

1. WKL$_0$.

2. *If f and g are injective functions from \mathbb{N} into \mathbb{N} and $\text{Ran}(f) \cap \text{Ran}(g) = \emptyset$, then there is a set X such that $\text{Ran}(f) \subset X$ and $X \cap \text{Ran}(g) = \emptyset$.***

Comment: X in (2) is like a separating set for disjoint computably enumerable sets.
The 2-coloring theorem implies WKL$_0$. A reversal!

Suppose we are given f and g with $\text{Ran}(f) \cap \text{Ran}(g) = \emptyset$.

If, for example, $f(3) = 0$ and $g(2) = 2$, we will construct the graph G as follows:
The 2-coloring theorem implies WKL$_0$. A reversal!

Suppose we are given f and g with $\text{Ran}(f) \cap \text{Ran}(g) = \emptyset$.

If, for example, $f(3) = 0$ and $g(2) = 2$, we will construct the graph G as follows:

Add straight links for f and and shifted links for g.
The 2-coloring theorem implies WKL\(_0\). A reversal!

Suppose we are given \(f \) and \(g \) with \(\text{Ran}(f) \cap \text{Ran}(g) = \emptyset \).

If, for example, \(f(3) = 0 \) and \(g(2) = 2 \), we will construct the graph \(G \) as follows:

Add straight links for \(f \) and and shifted links for \(g \), and 2-color.
The 2-coloring theorem implies WKL₀. A reversal!

Suppose we are given \(f \) and \(g \) with \(\text{Ran}(f) \cap \text{Ran}(g) = \emptyset \).

If, for example, \(f(3) = 0 \) and \(g(2) = 2 \), we will construct the graph \(G \) as follows:

Add straight links for \(f \) and and shifted links for \(g \), and 2-color.
A few other theorems equivalent to WKL$_0$.

Theorem
(RCA$_0$) The following are equivalent:
1. WKL$_0$.
2. Every ctn. function on $[0, 1]$ is bounded. (Simpson)
3. The closed interval $[0, 1]$ is compact. (Friedman)
4. Every closed subset of $\mathbb{Q} \cap [0, 1]$ is compact. (Hirst)
5. Existence theorem for solutions to ODEs. (Simpson)
6. The line graph of a bipartite graph is bipartite. (Hirst)
7. If $\langle x_n \rangle_{n \in \mathbb{N}}$ is a sequence of real numbers then there is a sequence of natural numbers $\langle i_n \rangle_{n \in \mathbb{N}}$ such that for each j, $x_{i_j} = \min\{x_n \mid n \leq j\}$. (Hirst)
Arithmetical Comprehension

ACA_0 is RCA_0 plus the following comprehension scheme:

For any formula \(\theta(n) \) with only number quantifiers, the set \(\{ n \in \mathbb{N} \mid \theta(n) \} \) exists.

The minimum \(\omega \) model of ACA_0 contains all the arithmetically definable sets.

Note: WKL_0 \(\not\vdash \) ACA_0, but ACA_0 \(\vdash \) WKL_0.
ACA$_0$ and Graph Theory

Theorem (RCA$_0$) *The following are equivalent:*

1. ACA$_0$
2. *Every graph can be decomposed into its connected components.*
Theorem
(RCA₀) The following are equivalent:

1. ACA₀
2. Every graph can be decomposed into its connected components.

Observation: The proof of “every graph with no odd cycles can be two colored” that starts by decomposing the graph into its connected components makes use of the strong axiom ACA₀. That proof is provably distinct from our proof in WKL₀.
Other theorems equivalent to ACA₀

Theorem
(RCA₀) *The following are equivalent:*

1. ACA₀.
2. *Bolzano-Weierstraß theorem.* (Friedman)
3. *Cauchy sequences converge.* (Simpson)
4. *Ramsey’s theorem for triples.* (Simpson)
Other theorems equivalent to ACA₀

Theorem
(RCA₀) The following are equivalent:

1. ACA₀.
2. Bolzano-Weierstraß theorem. (Friedman)
3. Cauchy sequences converge. (Simpson)
4. Ramsey’s theorem for triples. (Simpson)

General rule of thumb: ACA₀ suffices for undergraduate math.

RCA₀ proves transfinite induction for arithmetical formulas implies ACA₀. (Hirst)
Other theorems equivalent to ACA_0

Theorem

(RCA$_0$) *The following are equivalent:*

1. ACA_0.
2. *Bolzano-Weierstraß theorem.* (Friedman)
3. *Cauchy sequences converge.* (Simpson)
4. *Ramsey’s theorem for triples.* (Simpson)

General rule of thumb: ACA_0 suffices for undergraduate math.

RCA$_0$ proves transfinite induction for arithmetical formulas implies ACA_0. (Hirst)

Conclusion: All undergraduate math can be done via transfinite induction arguments.
Ramsey’s theorem on trees

RT1: If $f : \mathbb{N} \rightarrow k$ then there is a $c \leq k$ and an infinite set H such that $\forall n \in H \ f(n) = c$.

TT1: For any finite coloring of $2^{<\mathbb{N}}$, there is a monochromatic subtree order-isomorphic to $2^{<\mathbb{N}}$.

These results extend to colorings of n-tuples.
TTn_k parallels RTn_k

TTn_k: For any k coloring of the n-tuples of comparable nodes in $2^{<\mathbb{N}}$, there is a color and a subtree order-isomomorphic to $2^{<\mathbb{N}}$ in which all n-tuples of comparable nodes have the specified color.

Note: RTn_k is an easy consequence of TTn_k

Results in Chubb, Hirst, and McNichol:

- There is a computable coloring with no Σ^0_n monochromatic subtree. (Free.)
- Every computable coloring has a Π^0_n monochromatic subtree. (Not free.)
- For $n \geq 3$ and $k \geq 2$, RCA$^0_0 \vdash$ TT$^n_k \leftrightarrow$ ACA0_0.
TT¹ and TT² are problematic

\[\text{RCA}_0 + \Sigma^0_2 - \text{IND} \text{ can prove } TT^1. \]

\[\text{RCA}_0 + \text{RT}^1 \text{ does not suffice to prove } TT^1. \]

Corduan, Groszek, and Mileti

Question: Does TT¹ imply \(\Sigma^0_2 - \text{IND} \)?
TT1 and TT2 are problematic

RCA$_0$ + Σ_2^0 – IND can prove TT1.

RCA$_0$ + RT1 does not suffice to prove TT1.

Corduan, Groszek, and Mileti

Question: Does TT1 imply Σ_2^0 – IND?

RCA$_0$ + RT2 does not imply ACA$_0$. (Seetapun)

Does RCA$_0$ + TT2 imply ACA$_0$?

Does RCA$_0$ + TT2 imply WKL$_0$?
References

