Research Resources used in the production of

More reverse mathematics of the Heine-Borel theorem

a joint research project of Jeff Hirst and Jessica Miller¹ Department of Mathematical Sciences Appalachian State University

These slides are available at: www.mathsci.appstate.edu/~jlh

October 21, 2011

Jessica's research was supported by a two semester research assistantship from the

Graduate Research Associate Mentoring program of the Cratis D. Williams Graduate School.

MathSciNet is a mathematical literature search engine provided by the ASU library.

MathSciNet is a mathematical literature search engine provided by the ASU library.

MathSciNet is a mathematical literature search engine provided by the ASU library.

MathSciNet is a mathematical literature search engine provided by the ASU library.

Typesetting the paper

Mathematicians typeset papers, slides, and posters with TEX.

TEX is included in the ACS builds for PCs and Macs.

```
256 \noindent
257 (Vit Proof of the claim:)
258 To prove the reverse implication, suppose that for every $\sigma$, if
259 $x\in\overline{A} {\sigma\$ then $x\in\overline{A} {\sigma\cat 0}$
or $xin\overline(A). \sigma\cat 1\$. Thus we have a sequence of rapidly shrinking neighborhoods
261 SA (\sigma i)S, each of
which contain $x$. The associated sequence of distinct reals $\angle x \sigma_i\\rangle \text{i \n nat}$
263 converges to $x$.
264
265 To prove the forward implication, we will prove the contrapositive. Suppose
there is a $\sigma\$ such that $\x\in\overline(A)_{\sigma\$ but $\x\notin(\overline(A)_{\sigma\cat 0}\cup\\overline(A)_{\sigma\cat 1})\$.
268 or $P_(sigma)-(overline(A)_(sigma\cat 0)\cup\\pverline(A)_{sigma\cat 1))$, respectively, is an open set containing $x$ and
no other element of $\forall x_\sigma \mid \sigma \in 2^\nat \\$. So $x$ is not an
accumulation point of $\forall x_\sigma \mid \sigma \in 2^\nat \is.
271 completing the proof of the claim.
272
```

Typesetting the paper

Mathematicians typeset papers, slides, and posters with T_EX.

TEX is included in the ACS builds for PCs and Macs.

```
\noindent
 257 (Vit Proof of the claim:)
 258 To prove the reverse implication, suppose that for every $\sigma$, if
 259 $x\in\overline{A} {\sigma\$ the
 260 or $x\in\overline{A} {\sigma\ca
 261 SA (\sigma i)S, each of
 262 which contain $x$. The assoc
 263 converges to $x$.
 264
 265 To prove the forward implication
 266 there is a $\sigma$ such that $
 267 Either $x=x {\sigma}$ or $x\ne
 268 or $P {\sigma}-{\overline{A}} {
 269 no other element of $\forall x \sign
 270 accumulation point of $\forall x \sigma_sigma_sigma_sigma_sigma_sigma_sigma_sigma_sigma_sigma_sigma_sigma_sigma_sigma_sigma_sigma_sigma_sigma_sigma_sigma_sigma_sigma_sigma_sigma_sigma_sigma_sigma_sigma_sigma_sigma_sigma_sigma_sigma_sigma_sigma_sigma_sigma_sigma_sigma_sigma_sigma_sigma_sigma_sigma_sigma_sigma_sigma_sigma_sigma_sigma_sigma_sigma_sigma_sigma_sigma_sigma_sigma_sigma_sigma_sigma_sigma_sigma_sigma_sigma_sigma_sigma_sigma_sigma_sigma_sigma_sigma_sigma_sigma_sigma_sigma_sigma_sigma_sigma_sigma_sigma_sigma_sigma_sigma_sigma_sigma_sigma_sigma_sigma_sigma_sigma_sigma_sigma_sigma_sigma_sigma_sigma_sigma_sigma_sigma_sigma_sigma_sigma_sigma_sigma_sigma_sigma_sigma_sigma_sigma_sigma_sigma_sigma_sigma_sigma_sigma_sigma_sigma_sigma_sigma_sigma_sigma_sigma_sigma_sigma_sigma_sigma_sigma_sigma_sigma_sigma_sigma_sigma_sigma_sigma_sigma_sigma_sigma_sigma_sigma_sigma_sigma_sigma_sigma_sigma_sigma_sigma_sigma_sigma_sigma_sigma_sigma_sigma_sigma_sigma_sigma_sigma_sigma_sigma_sigma_sigma_sigma_sigma_sigma_sigma_sigma_sigma_sigma_sigma_sigma_sigma_sigma_sigma_sigma_sigma_sigma_sigma_sigma_sigma_sigma_sigma_sigma_sigma_sigma_sigma_sigma_sigma_sigma_sigma_sigma_sigma_sigma_sigma_sigma_sigma_sigma_sigma_sigma_sigma_sigma_sigma_sigma_sigma_sigma_sigma_sigma_sigma_sigma_sigma_sigma_sigma_sigma_sigma_sigma_sigma_sigma_sigma_sigma_sigma_sigma_sigma_sigma_sigma_sigma_sigma_sigma_sigma_sigma_sigma_sigma_sigma_sigma_sigma_sigma_sigma_sigma_sigma_sigma_sigma_sigma_sigma_sigma_sigma_sigma_sigma_sigma_sigma_sigma_sigma_sigma_sigma_sigma_sigma_sigma_sigma_sigma_sigma_sigma_sigma_sigma_sigma_sigma_sigma_sigma_sigma_sigma_sigma_sigma_sigma_sigma_sigma_sigma_sigma_sigma_sigma_sigma_sigma_sigma_sigma_sigma_sigma_sigma_sigma_sigma_sigma_sigma_sigma_sigma_sigma_sigma_sigma_sigma_sigma_sigma_sigma_sigma_sigma_sigma_sigma_sigma_sigma_sigma_sigma_sigma_sigma_sigma_sigma_sigma_sigma_sigma_sigma_sigma_sigma_sigma_sigma_sigma_sigma_sigma_sigma_sigma_sigma_sigma_sigma_sigma_sigma_sigma_sigma_sigma_sigma_sigma_sigma_sigma_sigma_sigma_sigma_sigm
 271 completing the proof of the cla
272
```

Jeffry L Hirst and Jessica Miller

Claim Let $x \in [0, 1]$. The real x is an accumulation point of $\{x_{\sigma} \mid \sigma \in 2^{\mathbb{N}}\}$ if and only if for every σ , if $x \in \overline{A}_{\sigma}$ then $x \in \overline{A}_{-\alpha 0}$ or $x \in \overline{A}_{-\alpha 1}$.

Proof of the claim: To prove the reverse implication, suppose that for every σ , if $x \in \overline{A}_{\sigma}$ then $x \in \overline{A}_{\sigma \cap 0}$ or $x \in \overline{A}_{\sigma \cap 1}$. Thus we have a sequence of rapidly shrinking neighborhoods A_{m} , each of which contain x. The associated sequence of distinct reals $\langle x_{\sigma_i} \rangle_{i \in \mathbb{N}}$ converges to x.

To prove the forward implication, we will prove the contrapositive. Suppose there is a σ such that $x \in \overline{A}_{\sigma}$ but $x \notin (\overline{A}_{\sigma \cap 0} \cup \overline{A}_{\sigma \cap 1})$. Either $x = x_{\sigma}$ or $x \neq x_{\sigma}$. Then either $A_{\sigma} - (\overline{A}_{\sigma \cap 0} \cup \overline{A}_{\sigma \cap 1})$ or $P_{\sigma} - (\overline{A}_{\sigma \cap 0} \cup \overline{A}_{\sigma \cap 1})$, respectively, is an open set containing x and no other element of $\{x_{\sigma} \mid \sigma \in 2^{\mathbb{N}}\}$. So x is not an accumulation point of $\{x_{\sigma} \mid \sigma \in 2^{\mathbb{N}}\}\$, completing the proof of the claim.

Non-mathematical applications of TEX

柳宗元

《漁翁》

- 漁翁夜傍西巖宿,
- 曉汲清湘燃楚燭。
- 煙銷日出不見人,
- 欸乃一聲山水綠。
- 迴看天際下中流,
- 巖上無心雲相逐。

Non-mathematical applications of T_EX

柳宗元 《漁翁》

漁翁夜傍西巖宿,

曉汲清湘燃楚燭。

煙銷日出不見人,

欸乃一聲山水綠。

迴看天際下中流,

巖上無心雲相逐。

Non-mathematical applications of T_FX

柳宗元 《漁翁》

- 漁翁夜傍西巖宿,
- 曉汲清湘燃楚燭。
- 煙銷日出不見人,
- 欸乃一聲山水綠。
- 迴看天際下中流,
- 巖上無心雲相逐。

Andante KV 315

pour flûte et orchestre

W. A. Mozart

MathSciNet and TEX work well together...

```
\begin{bibsection}{Bibliography}
\begin{biblist}
\bib\brown\{article}{
 author=(Brown, Douglas K.),
 title=(Notions of closed subsets of a complete separable metric space in
 weak subsystems of second-order arithmetic),
 conference=(
 title={Logic and computation},
  address=(Pittsburgh, PA).
  date={1987},
 book={
  series=(Contemp, Math.).
  volume=(106).
  publisher=(Amer, Math, Soc.).
  place=(Providence, BI).
 date={1990},
 pages=(39--50).
 review=(MB(1057814 (91i:03108))).
\bib\frabs\farticle\f
 author=(Friedman, Harvey M.),
 title=(Systems of second order arithmetic with restricted induction, I, II (abstracts)),
 iournal=(J. Symbolic Logic).
 volume={41},
 number=(2).
 date={1976},
 pages=(557--559).
\bib\fh\{\article\}\
 author=(Friedman, Harvey M.).
 author=(Hirst, Jeffry L.),
 title={Reverse mathematics and homeomorphic embeddings},
 iournal=(Ann. Puro Anni Logic)
```

MathSciNet and T_EX work well together...

\begin{bibsection}{Bibliography} \begin{biblist} \bib\brown\ author=(Br title={Notio

More reverse mathematics of the Heine-Borel Theorem

9

weak subs conference title={Loc address= book={ series=(C volume= publisher place=(P

review=(\)

current formulations seem to have some applicability. For example, Hirst's [4] result showing that the Heine-Borel Theorem for $\mathbb{Q} \cap [0, 1]$ implies WKL₀ is an immediate consequence of Theorem 2. Also, Friedman and Hirst [3] define a canonical embedding of a well ordered set into [0, 1]. Working in RCA₀, if we can show that $X \subseteq [0, 1]$ is a countable closed set and is the range of this sort of canonical embedding of a well ordering, then Theorem 1 shows that the Heine-Borel Theorem holds for X. pages=(39

\bib\frabs\fa author=(Fr title=(Syste

References

iournal=(J. volume={4 number=(2 date={1971 pages=(55

[1] DK Brown, Notions of closed subsets of a complete separable metric space in weak subsystems of second-order arithmetic, from: "Logic and computation (Pittsburgh, PA, 1987)", Contemp. Math. 106, Amer. Math. Soc., Providence, RI (1990) 39-50

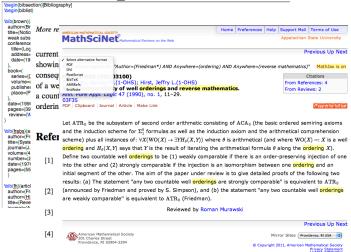
\bib\fh\{articl author=(Fr author=(Hi title={Reve iournal-(A

- [2] HM Friedman, Systems of second order arithmetic with restricted induction, I, II (abstracts), J. Symbolic Logic 41 (1976) 557-559
- [3] HM Friedman, JL Hirst, Reverse mathematics and homeomorphic embeddings, Ann. Pure Appl. Logic 54 (1991) 229-253
- [4] JL Hirst, A note on compactness of countable sets, from: "Reverse mathematics

MathSciNet and TEX work well together...

Privacy Statement

MathSciNet and TEX work well together...



MathSciNet and TEX work well together...

