Pigeonhole: Old and preliminary results

Jeffry Hirst
Appalachian State University
Boone, NC

June 13, 2024

RaTLoCC24
Pisa, Italy

Reverse mathematics

Reverse mathematics examines the logical strength of theorems via proofs in a hierarchy of subsystems of second order arithmetic.

Language:
Variables for numbers (type 0) and sets of numbers (type 1)
Base axiom system: RCA_{0}
Axioms: Basic arithmetic
$I \Sigma_{1}^{0}$: Induction for $\exists n$ formulas
Recursive comprehension
(sets with computable characteristic functions)

Reverse mathematics

Reverse mathematics examines the logical strength of theorems via proofs in a hierarchy of subsystems of second order arithmetic.

Language:
Variables for numbers (type 0) and sets of numbers (type 1)
Base axiom system: RCA
Axioms: Basic arithmetic
Σ_{1}^{0} : Induction for $\exists n$ formulas
Recursive comprehension
(sets with computable characteristic functions)
Induction and bounding schemes:

$$
I \Sigma_{1}^{0}<B \Pi_{1}^{0}<I \Sigma_{2}^{0}<B \Pi_{2}^{0}<\ldots
$$

RCA_{0} cannot prove B_{1}^{0}. For details, see Chapter 6 of Dzhafarov and Mummert's text [1].

An old pigeonhole theorem

Theorem: $\left(\mathrm{RCA}_{0}\right)$ The following are equivalent:
(1) $\mathrm{B} \Pi_{1}^{0}$: If $\theta(x, y, z)$ is a quantifier free formula, and $(\forall x<a)(\exists y)(\forall z) \theta(x, y, z)$ then

$$
(\exists b)(\forall x<a)(\exists y<b)(\forall z) \theta(x, y, z)
$$

(2) RT1: If $f: \mathbb{N} \rightarrow m$ then for some $j<m$, the set $\{n \mid f(n)=j\}$ is infinite.

This theorem is included in Hirst's thesis, but it's easier to find the proof in Dzhafarov and Mummert's text [1].

A preliminary result

Theorem $\left[H, K, M, R^{1}\right]\left(R C A_{0}\right)$ The following are equivalent:
(1) PHB: If $f: \mathbb{N} \rightarrow m$ then f has a pigeonhole basis, that is, a set B of exactly those colors that appear infinitely often in the range of f.
(2) $I \Sigma_{2}^{0}$: the induction scheme for $\exists x \forall y$ formulas.
${ }^{1}$ Authors include the members of the 2024 Noncomputability course at Appalachian State University: Silva Keohulian, Brody Miller, and Jessica Ross.

A preliminary result

Theorem $\left[H, K, M, R^{1}\right]\left(R C A_{0}\right)$ The following are equivalent:
(1) PHB: If $f: \mathbb{N} \rightarrow m$ then f has a pigeonhole basis, that is, a set B of exactly those colors that appear infinitely often in the range of f.
(2) $I \Sigma_{2}^{0}$: the induction scheme for $\exists x \forall y$ formulas.

This shows that PHB is strictly stronger than RT1.
Blueprint for the proof: Prove that PHB is equivalent to bounded Π_{2}^{0} comprehension, and invoke Ex. II.3.13 of Simpson [5].
${ }^{1}$ Authors include the members of the 2024 Noncomputability course at Appalachian State University: Silva Keohulian, Brody Miller, and Jessica Ross.

Ideas from the proof

- Bounded Π_{2}^{0} comprehension \rightarrow PHB

Suppose $f: \mathbb{N} \rightarrow m$. The pigeonhole basis is

$$
\{j<m \mid \forall s \exists n(n>s \wedge f(n)=j)\}
$$

Ideas from the proof

- Bounded Π_{2}^{0} comprehension \rightarrow PHB

Suppose $f: \mathbb{N} \rightarrow m$. The pigeonhole basis is

$$
\begin{gathered}
\{j<m \mid \forall s \exists n(n>s \wedge f(n)=j)\} \\
\text { bound } \quad \Pi_{2}^{0} \text { formula }
\end{gathered}
$$

Ideas from the proof

- Bounded Π_{2}^{0} comprehension \rightarrow PHB

Suppose $f: \mathbb{N} \rightarrow m$. The pigeonhole basis is

$$
\begin{gathered}
j<m \mid \forall s \exists n(n>s \wedge f(n)=j)\} \\
\text { bound } \quad \Pi_{2}^{0} \text { formula }
\end{gathered}
$$

- PHB \rightarrow bounded Π_{2}^{0} comprehension

A concrete example: We want to find

$$
S=\{j<2 \mid \forall s \exists n \theta(j, s, n)\} .
$$

Suppose $\theta(0,0,1), \theta(0,1,3), \theta(0,2,10)$, and so on. Suppose $\theta(1,0,0)$, but $\neg \exists n \theta(1,1, n)$. (Want $S=\{0\}$.)

Ideas from the proof

- Bounded Π_{2}^{0} comprehension \rightarrow PHB

Suppose $f: \mathbb{N} \rightarrow m$. The pigeonhole basis is

$$
\begin{gathered}
\{j<m \mid \forall s \exists n(n>s \wedge f(n)=j)\} \\
\text { bound } \quad \Pi_{2}^{0} \text { formula }
\end{gathered}
$$

- PHB \rightarrow bounded Π_{2}^{0} comprehension

A concrete example: We want to find

$$
S=\{j<2 \mid \forall s \exists n \theta(j, s, n)\} .
$$

Suppose $\theta(0,0,1), \theta(0,1,3), \theta(0,2,10)$, and so on. Suppose $\theta(1,0,0)$, but $\neg \exists n \theta(1,1, n)$. (Want $S=\{0\}$.)

Computation of the function f
Markers

| n | 0 | 1 | 2 | 3 | 4 | 5 | 6 |
| :---: | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |\quad| $j=0$ | 0 | | | |
| :--- | :--- | :--- | :--- | :--- |
| f for $j=0$ | | | | |
| f for $j=1$ | | | | |
| | | | | |
| $=1$ | 0 | | | |

Ideas from the proof

- Bounded Π_{2}^{0} comprehension \rightarrow PHB

Suppose $f: \mathbb{N} \rightarrow m$. The pigeonhole basis is

$$
\begin{gathered}
\{j<m \mid \forall s \exists n(n>s \wedge f(n)=j)\} \\
\text { bound } \quad \Pi_{2}^{0} \text { formula }
\end{gathered}
$$

- PHB \rightarrow bounded Π_{2}^{0} comprehension

A concrete example: We want to find

$$
S=\{j<2 \mid \forall s \exists n \theta(j, s, n)\} .
$$

Suppose $\theta(0,0,1), \theta(0,1,3), \theta(0,2,10)$, and so on. Suppose $\theta(1,0,0)$, but $\neg \exists n \theta(1,1, n)$. (Want $S=\{0\}$.)

Computation of the function f
Markers

Ideas from the proof

- Bounded Π_{2}^{0} comprehension \rightarrow PHB

Suppose $f: \mathbb{N} \rightarrow m$. The pigeonhole basis is

$$
\begin{gathered}
\{j<m \mid \forall s \exists n(n>s \wedge f(n)=j)\} \\
\text { bound } \quad \Pi_{2}^{0} \text { formula }
\end{gathered}
$$

- PHB \rightarrow bounded Π_{2}^{0} comprehension

A concrete example: We want to find

$$
S=\{j<2 \mid \forall s \exists n \theta(j, s, n)\} .
$$

Suppose $\theta(0,0,1), \theta(0,1,3), \theta(0,2,10)$, and so on. Suppose $\theta(1,0,0)$, but $\neg \exists n \theta(1,1, n)$. (Want $S=\{0\}$.)

Computation of the function f
Markers

| n | 0 | 1 | 2 | 3 | 4 | 5 | 6 |
| :---: | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |\quad| $j=0$ | 0 | 1 | | | |
| :--- | :--- | :--- | :--- | :--- | :--- |
| f for $j=0$
 f for $j=1$ | 3 | | 0 | | |
| | | | | | |
| $j=1$ | 0 | | | | |

Ideas from the proof

- Bounded Π_{2}^{0} comprehension \rightarrow PHB

Suppose $f: \mathbb{N} \rightarrow m$. The pigeonhole basis is

$$
\begin{gathered}
\{j<m \mid \forall s \exists n(n>s \wedge f(n)=j)\} \\
\text { bound } \quad \Pi_{2}^{0} \text { formula }
\end{gathered}
$$

- PHB \rightarrow bounded Π_{2}^{0} comprehension

A concrete example: We want to find

$$
S=\{j<2 \mid \forall s \exists n \theta(j, s, n)\} .
$$

Suppose $\theta(0,0,1), \theta(0,1,3), \theta(0,2,10)$, and so on. Suppose $\theta(1,0,0)$, but $\neg \exists n \theta(1,1, n)$. (Want $S=\{0\}$.)

Computation of the function f
Markers

n	0	1	2	3	4	5	6				
f for $j=0$	3		0		0				$j=0$	0	1
f for $j=1$											

Ideas from the proof

- Bounded Π_{2}^{0} comprehension \rightarrow PHB

Suppose $f: \mathbb{N} \rightarrow m$. The pigeonhole basis is

$$
\begin{gathered}
\{j<m \mid \forall s \exists n(n>s \wedge f(n)=j)\} \\
\text { bound } \quad \Pi_{2}^{0} \text { formula }
\end{gathered}
$$

- PHB \rightarrow bounded Π_{2}^{0} comprehension

A concrete example: We want to find

$$
S=\{j<2 \mid \forall s \exists n \theta(j, s, n)\} .
$$

Suppose $\theta(0,0,1), \theta(0,1,3), \theta(0,2,10)$, and so on. Suppose $\theta(1,0,0)$, but $\neg \exists n \theta(1,1, n)$. (Want $S=\{0\}$.)

Computation of the function f
Markers

| n | 0 | 1 | 2 | 3 | 4 | 5 | 6 | | $j=0$ | 0 | 1 |
| :---: | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | 2

Ideas from the proof

- Bounded Π_{2}^{0} comprehension \rightarrow PHB

Suppose $f: \mathbb{N} \rightarrow m$. The pigeonhole basis is

$$
\begin{gathered}
\{j<m \mid \forall s \exists n(n>s \wedge f(n)=j)\} \\
\text { bound } \quad \Pi_{2}^{0} \text { formula }
\end{gathered}
$$

- PHB \rightarrow bounded Π_{2}^{0} comprehension

A concrete example: We want to find

$$
S=\{j<2 \mid \forall s \exists n \theta(j, s, n)\} .
$$

Suppose $\theta(0,0,1), \theta(0,1,3), \theta(0,2,10)$, and so on. Suppose $\theta(1,0,0)$, but $\neg \exists n \theta(1,1, n)$. (Want $S=\{0\}$.)

Computation of the function f
Markers

n	0	1	2	3	4	5	6
f for $j=0$	3		0		0		3
f for $j=1$		1					

$$
\begin{array}{l|l|l|l}
j=0 & 0 & 1 & 2 \\
\hline j=1 & 0 & 1 &
\end{array}
$$

Ideas from the proof

- Bounded Π_{2}^{0} comprehension \rightarrow PHB

Suppose $f: \mathbb{N} \rightarrow m$. The pigeonhole basis is

$$
\begin{gathered}
\{j<m \mid \forall s \exists n(n>s \wedge f(n)=j)\} \\
\text { bound } \quad \Pi_{2}^{0} \text { formula }
\end{gathered}
$$

- PHB \rightarrow bounded Π_{2}^{0} comprehension

A concrete example: We want to find

$$
S=\{j<2 \mid \forall s \exists n \theta(j, s, n)\} .
$$

Suppose $\theta(0,0,1), \theta(0,1,3), \theta(0,2,10)$, and so on. Suppose $\theta(1,0,0)$, but $\neg \exists n \theta(1,1, n)$. (Want $S=\{0\}$.)

Computation of the function f
Markers
$\left.\begin{array}{c|cccccccc|c|c|c}\mathrm{n} & 0 & 1 & 2 & 3 & 4 & 5 & 6 \\ \hline \text { f for } j=0 & 3 & & 0 & & 0 & & 3 & & j=0 & 0 & 1\end{array}\right)$

Ideas from the proof

- PHB \rightarrow bounded Π_{2}^{0} comprehension

A concrete example: We want to find

$$
S=\{j<2 \mid \forall s \exists n \theta(j, s, n)\} .
$$

Suppose $\theta(0,0,1), \theta(0,1,3), \theta(0,2,10)$, and so on.
Suppose $\theta(1,0,0)$, but $\neg \exists n \theta(1,1, n)$. (Want $S=\{0\}$.)
Computation of the function f
Markers

n	0	1	2	3	4	5	6
f for $j=0$	3		0		0		3
f for $j=1$		1		3		3	

$$
\begin{array}{l|l|l|l}
j=0 & 0 & 1 & 2 \\
\hline j=1 & 0 & 1 & X
\end{array}
$$

Values of f are $3,1,0,3,0,3,3, \ldots$ (Infinitely many 0 s and 3 s .)
$\operatorname{PHB}(f)=\{0,3\}$. Delete the 3 to get $S=\{0\}$.

Enumerated matroids

Theorem [H,Mummert] (RCA_{0}) The following are equivalent:
(1) EMB: Every finite dimensional e-matroid has a basis.
(2) $I \Sigma_{2}^{0}$.

An e-matroid (M, e) consists of a set (like vectors) and a function $e: \mathbb{N} \rightarrow M^{<\mathbb{N}}$ that enumerates all the finite dependent sets. Requirements:
(1) \emptyset is independent.
(2) Finite supersets of dependent sets are dependent.
(3) Exchange principle: If X and Y are independent and $|X|<|Y|$, then for some $y \in Y, X \cup\{y\}$ is independent.

A basis is a maximal independent set.
(e, M) is finite dimensional if e enumerates all the sets bigger than size b for some b.

A direct proof

Theorem $\left(\mathrm{RCA}_{0}\right) \mathrm{EMB} \rightarrow \mathrm{PHB}$.
Sketch: Suppose $f: \mathbb{N} \rightarrow m$ is a PHB instance.
Preprocessing: Turn f into an EMB instance.
Let $f^{\prime}(n)$ be the identity if $n<m$ and $f(n)$ if $n \geqslant m$. Note that $\operatorname{PHB}\left(f^{\prime}\right)=\operatorname{PHB}(f)$. List all finite subsets of $\mathbb{N}\left(S_{0}, S_{1}, \ldots\right)$ with each set repeated infinitely many times. The set
$S_{n}=\left\{x_{0}, x_{1}, \ldots, x_{k}\right\}$ is dependent if there is an $x_{i}<m \leqslant n$ such that $f^{\prime}\left(x_{i}\right)=f^{\prime}(m)$. Define $e(n)=S_{n}$ if S_{n} is dependent, and $e(n)=[0, m]$ otherwise.
Apply EMB to find a basis for (e, \mathbb{N}). Call it B^{\prime}.
Postprocessing: Turn B^{\prime} into a PHB for f.
$x \in B^{\prime}$ if and only if x is the largest value colored $f^{\prime}(x)$. So $B=[0, m)-\left\{f^{\prime}(x) \mid x \in B^{\prime}\right\}$ is the pigeonhole basis for f^{\prime} (and also for f).

Weihrauch reductions

Problems: Input a set and output a set (or number)
PHB is a problem.
An instance of PHB is a function $f: \mathbb{N} \rightarrow m$.
Realizer: A function mapping instances to solutions.
We say P is Weihrauch reducible to Q (and write $P \leqslant w Q$) if there are (partial) computable procedures
Φ (for preprocessing) and Ψ (for postprocessing) such that if p is an instance of P , then

- $\Phi(p)$ is an instance of Q and
- for any solution s of $\Phi(p), \Psi(s, p)$ is a solution of p.

That is, if R_{Q} is any realizer of Q , then $\Psi\left(R_{\mathrm{Q}}(\Phi(p)), p\right)$ is a realizer for P.

Weihrauch analysis of PHB

Thm $[H, K, M, R] P H B \leqslant w E M B$.
Proof: Use the sketch for EMB $\rightarrow \mathrm{PHB}$.

Weihrauch analysis of PHB

Thm $[H, K, M, R] P H B \leqslant w E M B$.
Proof: Use the sketch for EMB \rightarrow PHB.

Another example:
The problem LPO (Limited Principle of Omniscience) Input: $f: \mathbb{N} \rightarrow 2$ Output: 0 if 0 is in the range of $f, 1$ if not.

Thm $[H, K, M, R] L P O \leqslant w P H B$.

Sketch: If f is (for example): | n | 0 | 1 | 2 | 3 | 4 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{f}(\mathrm{n})$ | 1 | 1 | 0 | 1 | 0 | then

$\Phi(f)$ is | n | 0 | 1 | 2 | 3 | 4 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $(\mathrm{f})(\mathrm{n})$ | 1 | 1 | 0 | 0 | 0 | . For an arbitrary $g: \mathbb{N} \rightarrow 2$,

if g has a zero, then $\operatorname{PHB}(\Phi(g))=\{0\}$, and if g has no zeros then $\operatorname{PHB}(\Phi(g))=\{1\}$, matching $\mathrm{LPO}(\mathrm{g})$.

Comparison of results

- Reverse mathematics:
$R^{2} A_{0}$ proves $\mathrm{PHB} \leftrightarrow E M B$.
RCA_{0} proves LPO (by classical logic), so LPO $\nrightarrow \mathrm{PHB}$.

Comparison of results

- Reverse mathematics:
$R^{R C A}$ proves $\mathrm{PHB} \leftrightarrow E M B$.
RCA_{0} proves LPO (by classical logic), so $\mathrm{LPO} \nrightarrow \mathrm{PHB}$.
- Weihrauch reducibility
$\mathrm{LPO}<_{\mathrm{w}} \mathrm{PHB}<{ }_{w} E M B$
The proofs that PHB $\not \mathrm{K}_{\mathrm{w}} \mathrm{LPO}$ and $\mathrm{EMB} \not \star_{\mathrm{w}} \mathrm{PHB}$ are somewhat technical proofs by contradiction.
- In both settings, LPO is strictly weaker than PHB.

Higher order reverse mathematics

Kohlenbach [4] introduced an extension of reverse mathematics to higher types. The language is richer, including functions from sets to numbers (type 2), for example.

If P is a Weihrauch problem, we can write (P) for the principle that asserts the existence of a realizer for P.

The relationship between $P \leqslant w Q$ and the theorem $(Q) \rightarrow(P)$ is often surprising.

A higher order result

Theorem $[\mathrm{H}, \mathrm{K}, \mathrm{M}, \mathrm{R}]\left(\mathrm{RCA}_{0}^{\omega}\right)$ The following are equivalent:
(1) (PHB): There is a function R_{PHB} such that if $f: \mathbb{N} \rightarrow m$, then $R_{\mathrm{PHB}}(f)$ is the pigeonhole basis for f.
(2) (LPO): There is a function $R_{\text {LPO }}$ such that if $f: \mathbb{N} \rightarrow 2$, then $R_{\mathrm{LPO}}(f)$ is 0 if 0 is in the range of f and 1 otherwise.

Comments on the proof:
(1) implies (2) is a formalization of LPO $\leqslant w$ PHB
(2) implies (1) depends on the fact that $R C A_{0}^{\omega}$ allows sequential applications of $R_{\text {LPO }}$. We could formalize a proof of $\mathrm{PHB} \leqslant \mathrm{w} \widehat{\mathrm{LPO}}$.
(LPO) is the same as Kohlenbach's $\left(\exists^{2}\right)$, and related to Kleene's E2.

Immediate questions

Does $\mathrm{RCA}_{0}^{\omega}$ prove $(\mathrm{LPO}) \leftrightarrow(\mathrm{EMB})$?
What about results for fixed (rather than bounded) dimension?
What about similar basis results for RT2 or RT3 or HT?
(Lists of infinite monochromatic sets in each possible color?)

References

[1] Damir D. Dzhafarov and Carl Mummert, Reverse mathematics-problems, reductions, and proofs, Theory and Applications of Computability, Springer, Cham, 2022. DOI 10.1007/978-3-031-11367-3. MR4472209
[2] Jeffry Hirst, Silva Keohulian, Brody Miller, and Jessica Ross, DRAFT: Reverse mathematics of a pigeonhole basis theorem (2024). Link in this talk entry.
[3] Jeffry L. Hirst and Carl Mummert, Reverse mathematics of matroids, Computability and complexity, Lecture Notes in Comput. Sci., vol. 10010, Springer, Cham, 2017, pp. 143-159. DOI 10.1007/978-3-319-50062-1_12. MR3629720
[4] Ulrich Kohlenbach, Higher order reverse mathematics, Reverse mathematics 2001, Lect. Notes Log., vol. 21, Assoc. Symbol. Logic, La Jolla, CA, 2005, pp. 281-295. DOI 10.1017/9781316755846.018. MR2185441
[5] Stephen G. Simpson, Subsystems of second order arithmetic, 2nd ed., Perspectives in Logic, Cambridge University Press and ASL, 2009. DOI 10.1017/CBO9780511581007. MR2517689

