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Abstract

The infinite pigeonhole theorem asserts that if f : N → m is a
function with a finite range, then there is a j < m such that the set
{n ∈ N | f(n) = j} is infinite. This article uses the techniques of
reverse mathematics and Weihrauch analysis to examine the strength
of a theorem that finds all the values that occur infinitely often in the
range of a function.

For a function f : N → m with a finite range, the pigeonhole basis for f
is the set B ⊆ [0,m) such that c ∈ B if and only if c appears infinite often in
the range. More formally, B = {c < m | ∀b∃n(n > b ∧ f(n) = c)}. (Monin
and Patey [8] consider computational basis theorems for finite partitions, a
different sort of pigeonhole basis theorem.) The next section examines the
strength of the existence of pigeonhole bases in reverse mathematics. The
following sections extend the examination via Weihrauch analysis and higher
order reverse mathematics.

1 Reverse mathematics: Induction and comprehension

The study of reverse mathematics is founded on a hierarchy of subsystems
of second order arithmetic, described in detail in the texts of Dzhafarov and
Mummert [3] and Simpson [10]. The base system RCA0 includes induction
restricted to Σ0

1 formulas and a set existence axiom for computable sets (for-
malized by ∆0

1 definability). As a consequence of the restriction on induction,
RCA0 cannot prove the Π0

1 bounding scheme, defined by

BΠ0
1 : (∀x < a)(∃y)(∀z)θ(x, y, z) → (∃b)(∀x < a)(∃y < b)(∀z)θ(x, y, z)
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where θ is a Σ0
0 formula. Indeed, over RCA0 there is a strict hierarchy of

bounding and induction schemes, with IΣ0
n weaker than BΠ0

n weaker than
IΣ0

n+1 for all n. (See Chapter 6 of Dzhafarov and Mummert [3] for details.)
The following theorem relates BΠ0

1 to the infinite pigeonhole priniciple (often
called RT1 or Ramsey’s theorem for singletons).

Theorem 1. (RCA0) The following are equivalent:

(1) BΠ0
1.

(2) RT1: If f : N → m then for some j < m, the set {n | f(n) = j} is
infinite.

The proof of Theorem 1 appeared initially in Hirst’s thesis [4], but is more
readily accessible in the texts of Dzhafarov and Mummert [3] (Theorem 6.5.1)
andWeber [11] (Theorem 9.5.1). While RT1 ensures that the pigeonhole basis
for a function is not empty, over RCA0 the existence of the pigeonhole basis
is strictly stronger, as shown by the following theorem.

Theorem 2. (RCA0) The following are equivalent:

(1) PHB: Every f : N → m has a pigeonhole basis.

(2) IΣ0
2: Induction restricted to Σ0

2 formulas.

Proof. Working in RCA0, by Exercise II.3.13 of Simpson [10], the induction
scheme IΣ0

2 is equivalent to bounded Π0
2 comprehension. Recall that the

pigeonhole basis of f is defined by B = {c < m | ∀b∃n(n > b ∧ f(n) = c},
which is a bounded Π0

2 set. Thus item (1) follows from item (2).
To show the converse, suppose m ∈ N and θ(c, b, n) is a Σ0

0 formula. Our
goal is to use PHB to prove that the set {c < m | ∀b∃nθ(c, b, n)} exists. Using
a bijection identifying triples (c, b, n) in m×N×N with integer codes, define
f : N → m+ 1 by

f(c, b, n) =

{
c if n is the least t ≤ n such that (∀j ≤ b)(∃k ≤ t)θ(c, j, k)

m otherwise.

Recursive comprehension proves the existence of f . Note that for a fixed c0,
if ∀b∃nθ(c0, b, n), then RCA0 proves that for each b there is a unique least
t such that (∀j ≤ b)(∃k ≤ t)θ(c0, j, k). In this situation, c0 appears in the
range of f once for each value of b, and so c0 is in the pigeonhole basis for f .
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On the other hand, for any fixed c1 satisfying ¬∀b∃nθ(c1, b, n), if b1 witnesses
∀n¬θ(c1, b1, n), then c1 appears in the range of f no more than b1 times.
In this situation, c1 is not in the pigeonhole basis for f . Summarizing, the
values less than m that are in the pigeonhole basis for f are exactly the set
{c < m | ∀b∃nθ(c, b, n)} as desired.

In light of the literature on reverse mathematics of matroids, the connec-
tion of the pigeonhole basis theorem and IΣ0

2 is not so surprising. Matroids
capture the fundamental notions of basis and dimension in a combinatorial
setting. Theorem 5 of Hirst and Mummert’s [5] shows the equivalence of a
matroid basis theorem and IΣ0

2. Informally, a matroid resembles the vectors
in a vector space, and an e-matroid as defined below is an enumeration of
dependent sets.

Definition. An e-matroid is a pair (M, e) consisting of a non-empty set M
and a function e : N → [M ]<N enumerating the finite dependent subsets of
M . The enumeration e satisfies the following conditions:

(1) The empty set is independent. Formally, ∀n(e(n) ̸= ∅).

(2) Finite supersets of dependent sets are dependent. Formally,

(∀n)(∀Y ∈ M<N)(e(n) ⊆ Y → ∃m(e(m) = Y )).

(3) (Exchange principle) If X and Y are independent with |X| < |Y |, then
Y contains an element that is independent of X. That is, if X and Y
are independent and |X| < |Y |, then (∃y ∈ Y )(∀n)(e(n) ̸= X ∪ {y}).

The set M is often used as a shorthand for the matroid (M, e). A finite set
B spans M if every proper extension is dependent. Formally, B spans M
means

(∀x ∈ M)(x /∈ B → (∃n)(e(n) = B ∪ {x})).
A finite subset B is a basis for M if B spans M and B is independent.

The e-matroid terminology can be used to add another equivalence to
Theorem 2.

Theorem 3. (RCA0) The following are equivalent:

(1) EMB: If the there is a bound b for the dimension of an e-matroid (M, e),
that is, if every set of size greater than b is dependent, then M has a
finite basis.
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(2) PHB: Every f : N → m has a pigeonhole basis.

(3) IΣ0
2: Induction restricted to Σ0

2 formulas.

Proof. The shortest proof is to note that Theorem 2 shows the equivalence of
PHB and IΣ0

2, and Theorem 5 of Hirst and Mummert [5] shows the equivalence
of EMB and IΣ0

2.

Of course, direct proofs of the equivalence of the first two items of The-
orem 3 are possible. In particular, see the comment following the proof of
Theorem 5 below.

The subsystem ACA0 includes a set comprehension axioms that asserts the
existence of arithmetically definable sets. Many results in reverse mathemat-
ics prove equivalences between familiar mathematical theorems and ACA0.
Finding pigeonhole bases for sequences of functions yields such a result.

Theorem 4. (RCA0) The following are equivalent:

(1) ACA0.

(2) If ⟨fi⟩i∈N is a sequence of functions with finite ranges, then there is a
function g : N → N such that for every n, g(n) is (the code for) the
pigeonhole basis for fn.

(3) If ⟨fi⟩i∈N is a sequence of functions from N to {0, 1}, then there is a
function g : N → N such that for every n, g(n) is (the code for) the
pigeonhole basis for fn.

Proof. We work in RCA0 throughout. To prove that item (1) implies item (2),
assume ACA0 and let ⟨fi⟩i∈N satisfy the hypotheses of item (2). Then for each
i, there is a unique (code for a) finite set Bi which is a pigeonhole basis for
fi. The set Bi satisfies the arithmetical formula

j ∈ Bi ↔ ∀m∀n(m < n ∧ fi(n) = j).

Thus arithmetical comprehension suffices to prove the existence of the func-
tion g which maps each i to (the code for) Bi.

Item (3) is a special case of item (2), so the proof can be completed with a
proof of item (1) from item (3). By Lemma III.1.3 of Simpson [10], it suffices

4



to use item (3) to find the range of an injection h : N → N. For each i, define
fi by:

fi(n) =


0 if (∀t ≤ n)(h(t) ̸= i)

0 if (∃t ≤ n)(h(t) = i) ∧ (∃m ≤ n)(2m = n)

1 if (∃t ≤ n)(h(t) = i) ∧ (∀m ≤ n)(2m ̸= n)

The existence of the sequence ⟨fi⟩i∈N is provable in RCA0. Intuitively, if i
has not appeared in the range of h by n, then fi(n) = 0. If i has appeared
in the range of h, then fi(n) is the parity of n. Thus the pigeonhole basis
for fi is {0} if i is not in the range of h and the basis is {0, 1} if i is in the
range. Apply item (3) to find a function g such that g(i) is the pigeonhole
basis for fi for all i. Then the range of h is {i ∈ N | g(i) = {0}}, and exists
by recursive comprehension.

2 Weihrauch Analysis

This section uses Weihrauch analysis to examine the pigeonhole basis theo-
rem. Introductions to the Weihrauch analysis can be found in the texts of
Dzhfarov and Mummert [3] and Weihrauch [12], and the works of Brattka
and Gherardi [1]. The article by Dorais et al [2] includes Weihrauch analysis
of many problems related to RT1.

We denote the Weihrauch problem related to the pigeonhole priniciple by
PHB. An instance of the problem PHB is a pair (f,m) where m is a natural
number and f : N → m. The solution for the problem is (the integer code for)
the pigeonhole basis for f . Similarly, an instance of the Weihrauch problem
EMB is a triple (M, e, b) where (M, e) is an e-matroid in which every set of
size b is dependent, and the solution is (an integer code for) a basis of (M, e).
This form of the problem is denoted by EMB<ω by Hirst and Mummert [5].

A realizer for a Weihrauch problem is a function that inputs instances
of the problem and outputs solutions. Because instances can have many
solutions, realizers are not unique. If P and Q are Weihrauch problems, we
say P is (weakly) Weihrauch reducible to Q and write P ≤W Q if there is
a computable preprocessing procedure Φ and a computable postprocessing
procedure Ψ such that for any realizer RQ for problem Q, the composition
Ψ(RQ(Φ(f)), f) is a realizer for P . Informally, Φ converts any instance f of
the problem P into an instance of Q, and Ψ converts any solution of Φ(f)
into a solution for f , referring to f in the conversion, if necessary. Using
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this terminology, the next theorem relates the Weihrauch problems PHB and
EMB.

Theorem 5. PHB ≤W EMB.

Proof. The preprocessing procedure for an instance (f,M) of PHB consists of
two steps. First, define f ′ : N → m by f ′(j) = j for j < m and f ′(j) = f(j)
for j ≥ m. Note that the range of f ′ includes all of [0,m) and the pigeonhole
basis of f ′ matches that of f . Second, compute an instance of EMB for f ′.
Let h : N → N<N computably enumerate the finite subsets of N, repeating
each subset infinitely often. Define the matroid (e,N) as follows. For each
n, suppose h(n) = {x0, . . . , xk}. If f ′ assigns the same value to two elements
of h(n), or if for some xj ∈ h(n) there is a t ≤ n such that t > xj and
f(t) = f(xj), then set e(n) = h(n), otherwise, set e(n) = {m}.

Now we will describe the postprocessing procedure. If S is any indepen-
dent set for (e,N) and s ∈ S, then s is the largest number for which f ′ takes
the value f ′(s). Let B be a basis for (e,N). The set {f ′(x) | x ∈ B} is ex-
actly those values in the range of f ′ which appear finitely often in the range
of f ′. Because f ′ is onto [0,m), B′ = {j < m | (∀x ∈ B)f ′(x) ̸= j} is the
pigeonhole basis for f ′ and thus for f .

The proof of Theorem 5 can easily be formalized in RCA0, providing a
direct proof of one direction of Theorem 3. Our original reverse mathematics
proof (not presented here) applied the preprocessing procedure to the func-
tion f , using bounded comprehension in the postprocessing stage to delete
the values not in the range of f from the complement of the image of the
matroid basis. The application of bounded comprehension barred a direct
conversion to a Weihrauch reduction, so the use of f ′ was added to the preced-
ing proof to address this issue. Our direct proof of the converse in Theorem
5 (not presented here) is more convoluted. The next theorem shows that no
Weihrauch reduction can be extracted from that proof.

Theorem 6. EMB ̸≤W PHB.

Proof. Suppose by way of contradiction that EMB ≤W PHB. Let Φ and Ψ be
the witnessing computable preprocessing and postprocessing procedures. For
each e-matroid (N, e) of dimension 1, Ψ((N, e), 1) yields a PHB problem of
the form (f,m) where f : N → m. Consider the e-matroid with e0 : N → N
defined by e(n) = {n + 1}. Suppose Φ((N, e0), 1) = (f,m0). The procedure
Φ is computable, so the value of m0 is determined by some finite stage using
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a finite initial segment of e0. Call the length of this segment u0. For every
e-matroid (N, e) of dimension 1 that agrees with e0 up to u0, Φ((N, e), 1) will
be a pair (f,m0) where f : N → m0. The pigeonhole basis for any such f is
one of the finitely many subsets of [0,m0).

We claim that there is an e-matroid (N, e) of dimension 1 such that for
every j there is an e-matroid (N, e1) of dimension 1 with e(n) = e1(n) for
all n ≤ j, the basis of (e1,N) is {k} for some k > j, and Φ((N, e), 1) and
Φ((N, e1), 1) have the same pigeonhole basis. To see this, suppose it is not the
case and consider (N, e0) from the preceding paragraph. Then there is a j0
such that for every (N, e1) of dimension 1, if e0(n) = e1(n) for all n ≤ j0 and
the basis of (N, e1) is {k} for some k > j0 then Φ((N, e0), 1) and Φ((N, e1), 1)
have different pigeonhole bases. For example, consider the matroid (N, e1)
where e1 : N → N is defined by e1(n) = e0(n) for n ≤ j0, e1(j0+1) = {0}, and
e1(n) = {n+1} for n ≥ j0+1. The basis of (N, e1) is {j0+1}, so Φ((N, e0), 1)
and Φ((N, e1), 1) must have distinct pigeonhole bases. Indeed, for any e-
matroid (N, e) of dimension 1 matching e1 up to j0 + 1, Φ((N, e), 1) and
Φ((N, e0), 1) will have distinct pigeonhole bases. Iterating the construction,
we can find e0, e1, . . . , e2m defining e-matroids so that the pigeonhole bases for
Φ((N, e0), 1), . . . ,Φ((N, e2m), 1) are 2m + 1 distinct subsets of [0,m), yielding
a contradiction.

Now suppose (N, e) is an e-matroid satisfying the claim of the first sen-
tence of the preceding paragraph. Let {b} be the basis of (N, e), and suppose
the pigeonhole basis of Φ((N, e), 1) is S. We know that Ψ(S, (N, e)) = {b}.
This computation uses only a finite initial segment of e, call the length
of this segment u. Applying the claim, Let j = max{u, b} and choose e1
such that e(n) = e1(n) for all n ≤ j, the basis of (N, e1) is {k} where
k > j, and the pigeonhole basis of Φ((N, e1), 1) is S. By the choice of j,
Ψ(S, (N, e1)) = Ψ(S, (N, e)). But if Ψ is correct, Ψ(S, (N, e)) = {b0} and
Ψ(S, (N, e1)) = {k}, where k > j ≥ b0. Thus no computable preprocessing
and postprocessing procedures can exist.

The next two results show that PHB is Weihrauch stronger than the
limited principle of omniscience. The Weihrauch problem LPO accepts inputs
of the form f : N → 2, outputs 1 if the range of f contains no zeros, and
outputs 0 if 0 is in the range of f .

Theorem 7. LPO ≤W PHB.
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Proof. Given an instance of LPO of the form f : N → 2, define Φ(f) by:

Φ(f)(n) =


1 if (∀t ≤ n)(f(t) = 1)

1 if (∃t ≤ n)(f(t) = 0) and n is odd

0 if (∃t ≤ n)(f(t) = 0) and n is even

For any f : N → 2, the pigeonhole basis of Φ(f) is {1} if f is never 0,
and {0, 1} if 0 is in the range of f . For S a set of size at most 2, define
Ψ(S) = 2 − |S|. Then if S is the pigeonhole basis of Φ(f), Ψ(S) calculates
the LPO output for f .

Theorem 8. PHB ̸≤W LPO.

Proof. Suppose by way of contradiction that Φ and Ψ are procedures that
witness PHB ≤W LPO. Suppose first that for every pigeonhole instance
f : N → 2, Φ(f) is the LPO instance that is constantly 1. Suppose that f
is the constant 0 function. Because 1 is the LPO solution of Φ(f), we must
have Ψ(f, 1) = {0}, the pigeonhole basis of f . The computation of Ψ uses
only a finite initial segment of f , say of length u. Define g(t) = 0 if t ≤ u
and g(t) = 1 otherwise. Then Ψ(g, 1) = Ψ(f, 1) = {0} although {1} is the
pigeonhole basis for g. Thus, there must be some pigeonhole instance whose
corresponding LPO instance is not constantly 1.

Now suppose that there is a pigeonhole instance f such that Φ(f) is an
LPO instance with a 0 in its range. The first zero of Φ(f) is calculated
using only a finite initial segment of f , say of length u0. Suppose Ψ(f, 0)
calculates the basis of f using only an initial segment of f of length u1. Let
u = max{u0, u1}. Let g be a function that matches f up to u, but has a
different pigeonhole basis for f . Then Φ(g) must contain a 0, and Ψ(g, 0)
matches the pigeonhole basis of f , yielding an incorrect value for g.

The proofs of Theorem 7 and 8 actually only use the restriction of the
pigeonhole basis problem to functions from N into 2. If we write PHB2 for the
restricted problem, we have shown that LPO ≤W PHB2 and PHB ̸≤W LPO2.

3 Higher order reverse mathematics

Reverse mathematics can be extended from numbers and sets of numbers to
higher types, such as functions from sets to numbers or from sets to sets. A
base theory RCAω

0 and early results are presented in Kohlenbach’s article [7].
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This framework has been used in many articles by Normann and Sanders
and by Hirst and Mummert (e.g. [9] and [6]). With the more expressive
language, principles can be formulated asserting the existence of realizers for
Weihrauch problems. For example, in the next theorem, the principle (LPO)
asserts the existence of a realizer for the Weihrauch problem LPO. Over
RCAω

0 , (LPO) is identical to Kohlenbach’s principle (∃2), which is related to
Kleene’s functional E2.

Theorem 9. (RCAω
0 ) The following are equivalent:

(1) (LPO) there is a functional LPO such that for all f : N → 2, LPO(f) =
0 if and only if ∃t(f(t) = 0). This principle is sometimes denoted
ACAω

0 .

(2) (PHB2) There is a function PHB2 such that for for all f : N → 2,
PHB2(f) is the pigeonhole basis of f .

Proof. To prove that item (2) implies item (1), note that RCAω
0 proves that

there is a function PRE such that for all f : N → 2, PRE(f) is a function
that is constantly 1 until a zero appears in the range of f and constantly 0
afterwards. The function LPO(f) is the element appearing in PHB2(PRE(f)).

The underlying idea of the proof that item (1) implies (2) is that given the
LPO function, RCAω

0 can iterate it. Suppose (LPO) holds. Let f : N → 2 be
an input for PHB2. Define the function Z(f, n)(k) by setting Z(f, n)(k) = 1
unless k is the nth number where f equals 0, in which case Z(f, n)(k) = 0.
Note that f has at least n zeros if and only if LPO(Z(f, n)) = 0. If f
has finitely many zeros, then for all values n larger than some bound m,
LPO(Z(f, n)) = 1. The function g(f, n) = 1 − LPO(Z(f, n)) has zeros in
its range if and only if f has only finitely many zeros. Thus the function
Z ′(f) = LPO(g(f, n)) takes the value 0 if f has finitely many zeros in its
range and 1 is f has infinitely many zeros. Define a similar function U ′(f)
that counts ones, so that U ′(f) = 0 if f has finitely many ones in its range
and 1 if f has infinitely many zeros. The function B(f) defined by

B(f) =


{0} if U ′(f) = 0 ∧ Z ′(f) = 1

{1} if U ′(f) = 1 ∧ Z ′(f) = 0

{0, 1} if U ′(f) = 1 ∧ Z ′(f) = 1

finds the pigeonhole basis for f .
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While the comment following Theorem 8 indicates that the Weihrauch
problems PHB2 and LPO are note Weihrauch equivalent, Theorem 9 shows
that the related higher order principles (PHB2) and (LPO) are provably equiv-
alent over RCAω

0 . In this case, the fact that the higher order functionals can
be applied sequentially makes them behave like the parallelized versions of
the Weihrauch problems, which are Weihrauch equivalent.
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